• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • Tagged with
  • 12
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Upscaling nonreactive solute transport

Llerar Meza, Gerónimo 29 June 2009 (has links)
This thesis focuses on solute transport upscaling. Upscaling of solute transport is usually required to obtain computationally efficient numerical models in many field applications such as, remediation of aquifers, environmental risk to groundwater resources or the design of underground repositories of nuclear waste. The non-Fickian behavior observed in the field, and manifested by peaked concentration profiles with pronounced tailing, has questioned the use of the classical advection-dispersion equation to simulate solute transport at field scale using numerical models with discretizations that cannot capture the field heterogeneity. In this context, we have investigated the use of the advection-dispersion equation with mass transfer as a tool for upscaling solute transport in a general numerical modeling framework. Solute transport by groundwater is very much affected by the presence of high and low water velocity zones, where the contaminant can be channelized or stagnant. These contrasting water velocity zones disappear in the upscaled model as soon as the scale of discretization is larger that the size of these zones. We propose, for the modeling solute transport at large scales, a phenomenological model based on the concept of memory functions, which are used to represent the unresolved processes taking place within each homogenized block in the numerical models. We propose a new method to estimate equivalent blocks, for which transport and mass transfer parameters have to be provided. The new upscaling technique consists in replacing each heterogeneous block by a homogeneous one in which the parameters associated to a memory functions are used to represent the unresolved mass exchange between highly mobile and less mobile zones occurring within the block. Flow upscaling is based on the Simple Laplacian with skin, whereas transport upscaling is based in the estimation of macrodispersion and mass transfer parameters as a result of the interpretation of the r / Llerar Meza, G. (2009). Upscaling nonreactive solute transport [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/5848
12

Investigation into reliability and performance of an implantable closed-loop insulin delivery device

Jacob, Dolly January 2014 (has links)
An implantable closed-loop insulin delivery device (INsmart device) containing a glucose responsive gel has been developed within the INsmart research group, over a period of 10 years, to mimic pancreas. In this thesis, the reliability and performance capability of the INsmart device was studied for future clinical use. Investigations into the device material compatibility with insulin solution, assessed by monitoring insulin loss and degradant formation over a period of 31 days using RP-HPLC have shown that stainless steel and titanium are the most compatible materials. Polycarbonate contributes to insulin loss after 11 days, resin might not be the best material and polyurethane is the least compatible for future device designs. To study insulin delivery mechanism and kinetics from the device, fluorescently labelled human insulin (FITC-insulin) was synthesised and characterised using RP-HPLC and MS, to produce a product with predominantly di-labelled conjugate (>75%) with no unreacted FITC or native insulin. Clinically used insulin analogues were also fluorescently labelled to produce predominantly di-labelled FITC-insulin conjugate with potential future biological and in vitro applications. The drug release mechanism from the glucose sensitive gel held in the INsmart device, studied using fluorescein sodium was determined as a Fickian diffusion controlled release mechanism. The diffusion coefficient (D) for FITC-insulin in the non-polymerised dex2M-conA gel (NP gel) determined using mathematical models, QSS and TL slope methods was 1.05 ± 0.02 x 10-11 m2/s and in the cross-linked dex500MA-conAMA gel (CL gel) was 0.75 ± 0.06 x 10-11 m2/s. In response to physiologically relevant glucose triggers in the NP gel, the diffusivity of FITC-insulin increases with increasing glucose concentrations, showing a second order polynomial fit, device thus showing glucose sensitivity and graded response, mimicking pancreas. Rheological measurements further confirmed the gel glucose responsiveness demonstrated by a third order polynomial fit between FITC-insulin D and the NP complex viscosity in response to increasing glucose concentration. The knowledge of FITC-insulin diffusion kinetics in the gel has aided in making some theoretical predictions for the capability and performance of the INsmart device. Alternate device geometry and design optimisation is also explored.

Page generated in 0.0274 seconds