• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Constructible Numbers Exact Arithmetic

Wennberg, Pimchanok January 2024 (has links)
Constructible numbers are the numbers that can be constructed by using compass and straightedge in a finite sequence. They can be produced from natural numbers using only addition, subtraction, multiplication, division, and square root operations. These operations can be repeated, which creates more complicated expressions for a mathematical object. Calculation by computers only gives an approximation of the exact value, which could lead to a loss of accuracy. An alternative to approximation is exact arithmetic, which is the computation to find an exact value without rounding errors. In this thesis, we have presented a method of computing with the exact value of constructible numbers, specifically the rational numbers and its field extension as well as repeated field extension, through the basic operations. However, we only limit our implementation to the quadratic polynomial and the operations between two numbers of the same extension field. Future work on polynomials with higher degrees and algorithms to include operations with numbers from different extension fields and expression of number as an element of a new extension field remains to be done.
2

Avkodning av cykliska koder - baserad på Euklides algoritm / Decoding of cyclic codes - based on Euclidean algorithm

Dahlin, Mathilda January 2017 (has links)
Today’s society requires that transformation of information is done effectively and correctly. In other words, the received message must correspond to the message being sent. There are a lot of decoding methods to locate and correct errors. The main purpose in this degree project is to study one of these methods based on the Euclidean algorithm. Thereafter an example will be illustrated showing how the method is used when decoding a three - error correcting BCH code. To begin with, fundamental concepts about coding theory are introduced. Secondly, linear codes, cyclic codes and BCH codes - in that specific order - are explained before advancing to the decoding process. The results show that correcting one or two errors is relatively simple, but when three or more errors occur it becomes much more complicated. In that case, a specific method is required. / Dagens samhälle kräver att informationsöverföring sker på ett effektivt och korrekt sätt, det vill säga att den information som når mottagaren motsvarar den som skickades från början. Det finns många avkodningsmetoder för att lokalisera och rätta fel. Syftet i denna uppsats är att studera en av dessa, en som baseras på Euklides algoritm och därefter illustrera ett exempel på hur metoden används vid avkodning av en tre - rättande BCH - kod. Först ges en presentation av grunderna inom kodningsteorin. Sedan introduceras linjära koder, cykliska koder och BCH - koder i nämnd ordning, för att till sist presentera avkodningsprocessen. Det visar sig att det är relativt enkelt att rätta ett eller två fel, men när tre eller fler fel uppstår blir det betydligt mer komplicerat. Då krävs någon speciell metod.
3

Diskrétně normované řády kvaternionových algeber / Discretely normed orders of quaternionic algebras

Horníček, Jan January 2014 (has links)
Tato práce shrnuje autorův výzkum v oblasti teorie kvaternionových algeber, jejich izomorfismů a maximálních řádů. Nový úhel pohledu na tuto problematiku je umožněn využitím pojmu diskrétní normy. Za hlavní výsledky práce je možná považovat důkaz jednoznačnosti diskrétní normy pro celá čísla, kvadratická rozšíření těles a řády kvaternionových algeber. Dále větu, která umožňuje mezi dvěma kvaternionovými algebrami konstruovat izomorfismy explicitně vyjádřené v maticovém tvaru. A v neposlední řadě důkaz existence nekonečně mnoha různých maximálních řádů kvaternionové algebry. Výsledky uvedené v této diplomové práci budou dále publikovány ve vědeckém článku.

Page generated in 0.0905 seconds