• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Measurement and modelling of unbalanced magnetic pull in hydropower generators

Wallin, Mattias January 2013 (has links)
Hydropower research is often perceived to be an old and exhausted field of study but with ageing equipment and the need for more intermittent operation caused by an increased share of other renewable energy sources new challenges lie ahead. The main focus of this dissertation are the electromagnetic forces resulting from nonuniform air gap flux, whether it be caused by rotor eccentricity or a faulty field winding. Results are predominantly obtained from measurements on an experimental generator and numerical simulations. With the computational capacity available today it is possible to numerically analyse physical phenomena that previously could only be studied with analytical tools. Numerical models can also be expanded to encompass more than one aspect of generator operation in coupled field-circuit models without model complexity surpassing computer capability. Three studies of unbalanced magnetic pull, UMP, in synchronous salient pole generators constitute the main part of this thesis. The first is a study of how parallel stator circuits affect the unbalanced magnetic pull caused by rotor eccentricity. Depending on the relationship between the geometry of the separate circuits and the direction of the eccentricity it was found that parallel circuits could reduce the UMP substantially. Secondly, an investigation of the effect of damper winding configuration on UMP was performed. The results showed that damper winding resistivity and the distance between the damper bars in a pole determine the effectiveness of the damper winding in reducing the UMP. Simulations of a production machine indicate that the reduction can be substantial from damper windings with low resistivity. The third study analyses the consequences of field winding interturn short circuits. Apart from a resulting rotating unbalanced magnetic pull it is found that the unaffected poles with the same polarity as the affected pole experience an increase in flux density. In a fourth article a new stand still frequency response, SSFR, test method including measurements of damper winding voltage and current is presented. It is found that the identified models are capable of predicting the stator to damper transfer function both with and without the damper winding measurements included.
2

Simulační modely synchronního stroje pro výukové potřeby / PMSM models for educational purposes

Lidmila, Petr January 2016 (has links)
This master´s thesis deals with synchronous motor model creation in MATLAB – Simulink program, with purpose of usage in AC Drives class. Models are created for motor with permanent magnets and for motor with wound rotor. The models are designed to enable simulation with both different longitudinal and transverse inductance, thus with salient rotor and non-salient rotor. The models can also be powered directly from three-phase sinusoidal source or a simple vector control can be used for their acceleration. All models are aligned so that their parameters can be set in only one m-file. Furthermore, automatic generation of phasor diagrams for steady-state motor, which serves as an interactive tool in class, is also created.
3

Voltage Transients in the Field Winding of Salient Pole Wound Synchronous Machines : Implications from fast switching power electronics

Felicetti, Roberto January 2021 (has links)
Wound Field Synchronous Generators provide more than 95% of the electricity need worldwide. Their primacy in electricity production is due to ease of voltage regulation, performed by simply adjusting the direct current intensity in their rotor winding. Nevertheless, the rapid progress of power electronics devices enables new possibilities for alternating current add-ins in a more than a century long DC dominated technology. Damping the rotor oscillations with less energy loss than before, reducing the wear of the bearings by actively compensating for the mechanic unbalance of the rotating parts, speeding up the generator with no need for additional means, these are just few of the new applications which imply partial or total alternated current supplying of the rotor winding. This thesis explores what happens in a winding traditionally designed for the direct current supply when an alternated current is injected into it by an inverter. The research focuses on wound field salient pole synchronous machines and investigates the changes in the field winding parameters under AC conditions. Particular attention is dedicated to the potentially harmful voltage surges and voltage gradients triggered by voltage-edges with large slew rate. For this study a wide frequency band simplified electromagnetic model of the field winding has been carried out, experimentally determined and validated. Within the specific application of the fast field current control, the research provides some references for the design of the rotor magnetic circuit and of the field winding. Finally the coordination between the power electronics and the field winding properties is addressed, when the current control is done by means of a long cable or busbars, in order to prevent or reduce the ringing.

Page generated in 0.0668 seconds