• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 2
  • 1
  • 1
  • Tagged with
  • 20
  • 20
  • 18
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ellipsometric and nanogravimetric porosimetry studies of nanostructured, mesoporous electrodes

May, Robert Alan 26 August 2010 (has links)
Nanostructured, porous materials offer great promise for application in areas such as energy storage, photovoltaics, and catalysis. These materials are often difficult to characterize because they are structurally and compositionally inhomogeneous, and disordered with features to small to be resolved by scanning probe techniques such as atomic force microscopy (AFM) and scanning electron microscopy (SEM). These shortcomings require that new techniques be developed that can be applied to real world systems to elucidate how the interplay of material composition and structure alters their performance. Towards this end, the development of a hybrid quartz crystal microbalance/ ellipsometric porosimetry (QCM/EP) technique is being pursued to facilitate the determination of a number of material parameters such as porosity, pore size distribution, and surface area. Additionally, the use of adsorbate probe molecules of varying polarity gives further information about adsorbate-surface interactions and surface chemistry characteristics. Simultaneous acquisition of both mass-based and refractive index based adsorption isotherms fosters mechanistic understanding about the behavior of adsorbates confined in mesopores while at the same time reducing the uncertainty in the analysis of the optical parameters acquired via ellipsometry. To highlight the power of this approach, studies of TiO₂ and TiC, electrode materials as model systems will be presented that have helped us validate measurement and modeling protocols for extracting physical properties. / text
2

VO2-based Thermochromic and Nanothermochromic Materials for Energy-Efficient Windows : Computational and Experimental Studies

Li, Shuyi January 2013 (has links)
VO2-based films are thermochromic and exhibit high or low infrared transmittance when the temperature is below or above a critical temperature. The thermochromic switching is passive and reversible, and therefore VO2 based films are promising for energy-efficient window appli­cations. However the practicaluse of VO2 for energy-efficient windows has long been hampered by low luminous transmittance and low solar energy transmittance modulation. The main goal of this dissertation work is to address these issues. The first half of the work proposes the concept of nanothermochromics for simultaneous improvement of luminous transmittance and modulation of solar energy throughput. nanoth­ermochromics considers VO2 nanoparticle composite layers, whose optical properties were modeled by effective medium theories. Calculations on VO2 spheroids have shown that VO2 nanoparticles, especially nanospheres, can offer dramatically improved luminous transmittance and solar transmittance modulation that are not possible for films. Calculations done on coreshell nanoparticles showed comparable improvements and offer an opportunity to reduce the material costs. It was also found that the composite of In2O3:Sn (ITO) and VO2 can yield moderately high luminous transmittance, solar transmittance modulation and low-emittance properties. In the second half of the dissertation work, Mg-doped VO2 films were sputter deposited. Their band gaps and Mg-content were investigated by means of optical absorption measurement and Rutherford backscattering spectrometry, respectively. The band gaps of VO2 were found to increase by ∼3.9±0.5 eV per unit of atom ratio Mg/(Mg+V) for 0<Mg/(Mg+V)<0.21. Computations based on effective medium theory were done to estimate the performance of Mg­-doped VO2 films and nanoparticle composite layers. The results suggest that moderately doped VO2 films with 0<Mg/(Mg+V)<0.06 perform better than un-doped films and that the perfor­mance can be further enhanced with one layer of antireflection coating. The best results were achieved by un-doped VO2 nanospheres, closely followed by the VO2 nanospheres with low Mg-content. Furthermore, the an experimental study on sputter deposited VO2 nanorods has identified the geometry of the oxygen gas inlet, the type of substrate, the substrate temperature and the layer thickness as important factors that influence the growth morphology. Taken as a whole, nanothermochromics offered by VO2 nanoparticles was shown to be the best solution for VO2 based thermochromic energy-efficient window coatings.
3

CHEMICAL DETECTION AND SENSING USING OPTICAL INTERFEROMETRY

Chen, Weijian 20 September 2013 (has links)
Chemical detection, including analysis of gases and liquids, is a large field in environmental research and industry. It requires sensitive, rapid, and inexpensive chemical sensors. Many industrial materials such as coatings and adhesives readily absorb chemical analytes, which may result in changes of their chemical, mechanical, and optical properties. This uptake of volatile organic compounds either from the gas phase or from an aqueous solution into a thin film is frequently accompanied by a change in material refractive index and film thickness. While the undesired swelling of thin film coatings and their refractive index changes affect their use in harsh environments, the sensitivity of some polymers to solvent vapours can also be exploited for sensing applications. In this project, a method is reported for real-time monitoring of vapour uptake by simultaneous detection of the refractive index, n, and thickness, d, of thin transparent films with a precision of 10-4 for refractive index and 100 nm for thickness. The setup combines a total internal reflection refractometer with an interferometric imaging method. Two setups using 1550 nm and 635 nm measurement wavelengths were developed, with a detection rate of 1 second per measurement. Two processing methods using a fast Fourier transform algorithm to calculate n and d are applied to the experimental results and compared. Both methods could extract n and d simultaneously from each image captured by the refractometer. The results show that the setup is capable of monitoring film RI and thickness change in real-time. The partitioning of volatile organic compound vapours into polydimethylsiloxane (PDMS) and PDMS-polydiphenylsiloxane (PDPS) copolymers is described. The system is also suited for characterization of other solid and liquid films like SU-8 photoresist and crude oil. It shows great potential in commercial applications of thin film characterization. / Thesis (Master, Electrical & Computer Engineering) -- Queen's University, 2013-09-19 22:21:38.836
4

Study of Charges Present in Silicon Nitride Thin Films and Their Effect on Silicon Solar Cell Efficiencies

January 2013 (has links)
abstract: As crystalline silicon solar cells continue to get thinner, the recombination of carriers at the surfaces of the cell plays an ever-important role in controlling the cell efficiency. One tool to minimize surface recombination is field effect passivation from the charges present in the thin films applied on the cell surfaces. The focus of this work is to understand the properties of charges present in the SiNx films and then to develop a mechanism to manipulate the polarity of charges to either negative or positive based on the end-application. Specific silicon-nitrogen dangling bonds (·Si-N), known as K center defects, are the primary charge trapping defects present in the SiNx films. A custom built corona charging tool was used to externally inject positive or negative charges in the SiNx film. Detailed Capacitance-Voltage (C-V) measurements taken on corona charged SiNx samples confirmed the presence of a net positive or negative charge density, as high as +/- 8 x 1012 cm-2, present in the SiNx film. High-energy (~ 4.9 eV) UV radiation was used to control and neutralize the charges in the SiNx films. Electron-Spin-Resonance (ESR) technique was used to detect and quantify the density of neutral K0 defects that are paramagnetically active. The density of the neutral K0 defects increased after UV treatment and decreased after high temperature annealing and charging treatments. Etch-back C-V measurements on SiNx films showed that the K centers are spread throughout the bulk of the SiNx film and not just near the SiNx-Si interface. It was also shown that the negative injected charges in the SiNx film were stable and present even after 1 year under indoor room-temperature conditions. Lastly, a stack of SiO2/SiNx dielectric layers applicable to standard commercial solar cells was developed using a low temperature (< 400 °C) PECVD process. Excellent surface passivation on FZ and CZ Si substrates for both n- and p-type samples was achieved by manipulating and controlling the charge in SiNx films. / Dissertation/Thesis / Ph.D. Electrical Engineering 2013
5

Investigation of Low-Stress Silicon Nitride as a Replacement Material for Beryllium X-Ray Windows

Brough, David B. 12 December 2012 (has links) (PDF)
The material properties of low stress silicon nitride make it a possible replacement material for beryllium in X-ray windows. In this study, X-ray windows made of LPCVD deposited low stress silicon nitride are fabricated and characterized. The Young's modulus of the LPCVD low stress silicon nitride are characterized and found to be 226±23 GPa. The residual stress is characterized using two different methods and is found to be 127±25 MPa and 141±0.28 MPa. Two support structure geometries for the low stress silicon nitride X-ray windows are used. X-ray windows with thicknesses of 100 nm and 200 nm are suspended on a silicon rib support structure. A freestanding circular geometry is used for a 600 nm thick X-ray window. The 100 nm and 200 nm thick low stress silicon nitride X-ray windows with a silicon support structure are burst tested, cycling tested and leak rate tested. The average burst pressure for the 100 and 200 nm films on a silicon support structure are 1.4 atm and 2.2 atm respectively. Both 100 nm and 200 nm windows are able to withstand a difference in pressure of 1 atm for over 100 cycles with a leak rate of less than 10-10 mbar-L/s.The low stress silicon nitride with 100 nm and 200 nm thicknesses, the 600 nm freestanding low stress silicon nitride windows and freestanding 8 micron thick beryllium windows are mechanical shock resistance tested. The support structure low stress silicon nitride and beryllium windows are tested with an applied vacuum. The freestanding 600 nm thick low stress silicon nitride windows burst at 0.4 atm and are therefore mechanical shock wave tested without an applied vacuum. The support structure low stress silicon nitride windows fractured when subjected to an acceleration of roughly 5,000 g. The 8 micron thick beryllium windows are subjected to accelerations of over 30,000 g without fracturing. A quasistatic model is used to show that for low stress silicon nitride with a freestanding circular geometry, an acceleration of 106 g is required to have the same order of magnitude of stress caused by a pressure differential of 1 atm. Low stress silicon nitride can act as a replacement for beryllium in X-ray windows, but the support geometry, residual stress, and strength of the material need to be optimized.
6

Fabrication and characterization of ZnO film by spray pyrolysis and ZnO polycrystalline sintered pellets doped with rear earth ions

Al-Ahmadi, Ahmad January 2003 (has links)
No description available.
7

Fabrication and electrical characterization of carbon-based molecular electronic junctions

Anariba, Franklin E. 10 March 2005 (has links)
No description available.
8

Growth And Characterization of Si-Ge-Sn Semiconductor Thin Films using a Simplified PECVD Reactor

January 2020 (has links)
abstract: The realization of Silicon based photonic devices will enable much faster data transmission than is possible today using the current electronics based devices. Group IV alloys germanium tin (GeSn) and silicon germanium tin (SiGeSn) have the potential to form an direct bandgap material and thus, they are promising candidates to develop a Si compatible light source and advance the field of silicon photonics. However, the growth of the alloys is challenging as it requires low temperature growth and proper strain management in the films during growth to prevent tin segregation. In order to satisfy these criteria, various research groups have developed novel chemical vapor deposition (CVD) reactors to deposit the films. While these reactors have been highly successful in depositing high crystal quality high Sn concentration films, they are generally expensive set-ups which utilize several turbomolecular/cryogenic pumps and/or load-lock systems. An more economical process than the state-of-the art to grow group IV materials will be highly valuable. Thus, the work presented in this dissertation was focused on deposition of group IV semiconductor thin films using simplified plasma enhanced CVD (PECVD) reactors. Two different in-house assembled PECVD reactor systems, namely Reactor No. 1 and 2, were utilized to deposit Ge, GeSn and SiGeSn thin films. PECVD technique was used as plasma assistance allows for potentially depositing the films at growth temperatures lower than those of conventional CVD. Germane (GeH4) and Digermane (Ge2H6) were used as the Ge precursor while Disilane (Si2H6) and tin chloride (SnCl4) were used as the precursors for Si and Sn respectively. The growth conditions such as growth temperature, precursor flow rates, precursor partial pressures, and chamber pressure were varied in a wide range to optimize the growth conditions for the films. Polycrystalline Ge films and SiGeSn films with an Sn content upto 8% were deposited using Reactor No. 1 and 2. Development of epitaxial Ge buffers and GeSn films was accomplished using a modified Reactor No. 2 at temperatures <400oC without the aid of ultra-high vacuum conditions or a high temperature substrate pre-deposition bake thereby leading to a low economic and thermal budget for the deposition process. / Dissertation/Thesis / Doctoral Dissertation Materials Science and Engineering 2020
9

Thin film acoustic waveguides and resonators for gravimetric sensing applications in liquid

Francis, Laurent A. 01 February 2006 (has links)
The fields of health care and environment control have an increasing demand for sensors able to detect low concentrations of specific molecules in gaseous or liquid samples. The recent introduction of microfabricated devices in these fields gave rise to sensors with attractive properties. A cutting edge technology is based on guided acoustic waves, which are perturbed by events occurring at the nanometer scale. A first part of the thesis investigates the Love mode waveguide, a versatile structure in which a thin film is guiding the acoustic wave generated in a piezoelectric substrate. A systematic analysis of its sensitivity was obtained using a transmission line model generalized to discriminate the rigid or viscous nature of the probed layers. We developed a novel integrated combination of the Love mode device with a Surface Plasmon Resonance optical sensor to quantify the thickness and the composition of soft layers. The electromagnetic interferences in the recorded signal were modeled to determine the phase velocity in the sensing area and to provide new mechanisms for an enhanced sensitivity. The experimental aspects of this work deal with the fabrication, the important issue of the packaging and the sensitivity calibration of the Love mode biosensor. A second part of the thesis investigates nanocrystalline diamond under the form of a thin film membrane suspended to a rigid silicon frame. The high mechanical and chemical resistance of nanocrystalline diamond, close to single-crystal diamond, open ways to membrane based acoustic sensors such as Flexural Plate Wave and thin Film Bulk Acoustic Resonators (FBAR). A novel dynamic characterization of the thin film is reported and the properties of composite FBAR devices including a diamond thin film membrane and a piezoelectric aluminum nitride layer are assessed using the perturbation theory. This study is applied to evaluate the high sensing potential of the first prototype of an actual diamond-based composite FBAR.
10

Thin film acoustic waveguides and resonators for gravimetric sensing applications in liquid

Francis, Laurent A. 01 February 2006 (has links)
The fields of health care and environment control have an increasing demand for sensors able to detect low concentrations of specific molecules in gaseous or liquid samples. The recent introduction of microfabricated devices in these fields gave rise to sensors with attractive properties. A cutting edge technology is based on guided acoustic waves, which are perturbed by events occurring at the nanometer scale. A first part of the thesis investigates the Love mode waveguide, a versatile structure in which a thin film is guiding the acoustic wave generated in a piezoelectric substrate. A systematic analysis of its sensitivity was obtained using a transmission line model generalized to discriminate the rigid or viscous nature of the probed layers. We developed a novel integrated combination of the Love mode device with a Surface Plasmon Resonance optical sensor to quantify the thickness and the composition of soft layers. The electromagnetic interferences in the recorded signal were modeled to determine the phase velocity in the sensing area and to provide new mechanisms for an enhanced sensitivity. The experimental aspects of this work deal with the fabrication, the important issue of the packaging and the sensitivity calibration of the Love mode biosensor. A second part of the thesis investigates nanocrystalline diamond under the form of a thin film membrane suspended to a rigid silicon frame. The high mechanical and chemical resistance of nanocrystalline diamond, close to single-crystal diamond, open ways to membrane based acoustic sensors such as Flexural Plate Wave and thin Film Bulk Acoustic Resonators (FBAR). A novel dynamic characterization of the thin film is reported and the properties of composite FBAR devices including a diamond thin film membrane and a piezoelectric aluminum nitride layer are assessed using the perturbation theory. This study is applied to evaluate the high sensing potential of the first prototype of an actual diamond-based composite FBAR.

Page generated in 0.1139 seconds