• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development and three-dimensional histology of vertebrate dermal fin spines

Jerve, Anna January 2016 (has links)
Jawed vertebrates (gnathostomes) consist of two clades with living representatives, the chondricthyans (cartilaginous fish including sharks, rays, and chimaeras) and the osteichthyans (bony fish and tetrapods), and two fossil groups, the "placoderms" and "acanthodians". These extinct forms were thought to be monophyletic, but are now considered to be paraphyletic partly due to the discovery of early chondrichthyans and osteichthyans with characters that had been previously used to define them. Among these are fin spines, large dermal structures that, when present, sit anterior to both median and/or paired fins in many extant and fossil jawed vertebrates. Making comparisons among early gnathostomes is difficult since the early chondrichthyans and "acanthodians", which have less mineralized skeleton, do not have large dermal bones on their skulls. As a result, fossil fin spines are potential sources for phylogenetic characters that could help in the study of the gnathostome evolutionary history. This thesis examines the development and internal structure of fin spines in jawed vertebrates using two-dimensional (2D) thin sections and three-dimensional (3D) synchrotron datasets. The development of the dorsal fin spine of the holocephalan, Callorhinchus milii, was described from embryos and compared to that of the neoselachian, Squalus acanthias, whose spine has been the model for studying fossil shark spines. It was found that the development of the C. milii fin presents differences from S. acanthias that suggest it might be a better candidate for studying "acanthodian" fin spines. The 3D histology of fossil fin spines was studied in Romundina stellina, a "placoderm"; Lophosteus superbus, a probable stem-osteichthyan; and sever­­al "acanthodians". The 3D vascularization reconstructed from synchrotron radiation microtomographic data reveal that "acanthodian" and Lophosteus spines grew similarly to what is observed in chondrichthyans, which differs slightly from the growth of the Romundina spine. Chondrichthyans and "acanthodians" also share similarities in their internal organization. Overall, Lophosteus and Romundina spines are more similar in terms of morphology and histology compared to chondrichthyans and "acanthodians". These results support the current hypothesis of gnathostome phylogeny, which places "acanthodians" on the chondrichthyan stem. They also emphasize the need for further study of vertebrate fin spines using 3D approaches.
2

Evaluation of fin ray and fin spine chemistry as indicators of environmental history for five fish species

Smith, Kurt Thomas 01 December 2010 (has links)
Knowledge of environmental history is important for the management and conservation of fish populations. Multiple methods to tag or mark fish have been developed (e.g., radio transmitters, coded wire tags, PIT tags, genetic markers), however, each of these methods has limitations. Naturally occurring and artificial chemical markers in otoliths have recently been used to determine natal origins and environmental history of fishes in both marine and freshwater environments and are not subject to the shortcomings of conventional tagging methods. However, few studies have evaluated the application of fish fin rays as a non-lethal alternative to fish otoliths as a recorder of individual fish environmental history. Therefore, I evaluated the application of artificial and naturally occurring chemical markers in fish fin rays as tracers of individual environmental histories. Specifically, I sought to determine 1) if age-0 lake sturgeon pectoral fin rays could be marked by immersion in strontium carbonate (SrCO3) enriched with the stable isotope 86Sr (86SrCO3), 2) whether natural differences in otolith and fin spine chemistry are present in catfish species collected from the Mississippi River basin, and 3) whether natural differences in fin ray chemistry are present in smallmouth bass from different rivers and streams in northern Illinois. Results from the first objective indicated that age-0 lake sturgeon were marked with 83% success when reared in water enriched with 100 µg/L of 86SrCO3, compared to control fish, and mark retention was maintained for at least 120 d following the labeling period. Results of the second objective indicated that both catfish otolith Sr:Ca, δ18O, and δ13C and fin spine Sr:Ca differed among sites, reflecting geographic differences in water chemistry at source locations. Both structures classified fish to their environment of capture with a high degree of accuracy, except in the Middle and Lower Mississippi Rivers where many recent immigrants appeared to be present. Similarly, smallmouth bass fin ray core Sr:Ca differed among sites, reflecting previously documented differences in water chemistry among streams and rivers in northern Illinois. Classification accuracy of smallmouth bass to their environment of capture based on fin ray Sr:Ca was variable, as some rivers had similar water chemistry signatures. The use of artificial chemical marks in fin rays will be useful when marking small fish that may not respond well to physical tags, when non-lethal recovery is desirable, and to distinguish between multiple batches of stocked fish (i.e. to evaluate factors such as stocking location and timing, fish size, and when fish may become interspersed into the existing population). Natural chemical signatures in pectoral fin rays or fin spines may provide a non-lethal alternative to otoliths for gathering information on environmental history (e.g. stock mixing, recruitment sources) of smallmouth bass and catfishes, consistent with recent demonstrations of this technique's effectiveness in other fish species. Ultimately, the use of artificial and naturally occurring chemical marks in fish fin rays provides a non-lethal alternative method to evaluate the environmental history of all life stages of fish

Page generated in 0.0465 seconds