• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development and three-dimensional histology of vertebrate dermal fin spines

Jerve, Anna January 2016 (has links)
Jawed vertebrates (gnathostomes) consist of two clades with living representatives, the chondricthyans (cartilaginous fish including sharks, rays, and chimaeras) and the osteichthyans (bony fish and tetrapods), and two fossil groups, the "placoderms" and "acanthodians". These extinct forms were thought to be monophyletic, but are now considered to be paraphyletic partly due to the discovery of early chondrichthyans and osteichthyans with characters that had been previously used to define them. Among these are fin spines, large dermal structures that, when present, sit anterior to both median and/or paired fins in many extant and fossil jawed vertebrates. Making comparisons among early gnathostomes is difficult since the early chondrichthyans and "acanthodians", which have less mineralized skeleton, do not have large dermal bones on their skulls. As a result, fossil fin spines are potential sources for phylogenetic characters that could help in the study of the gnathostome evolutionary history. This thesis examines the development and internal structure of fin spines in jawed vertebrates using two-dimensional (2D) thin sections and three-dimensional (3D) synchrotron datasets. The development of the dorsal fin spine of the holocephalan, Callorhinchus milii, was described from embryos and compared to that of the neoselachian, Squalus acanthias, whose spine has been the model for studying fossil shark spines. It was found that the development of the C. milii fin presents differences from S. acanthias that suggest it might be a better candidate for studying "acanthodian" fin spines. The 3D histology of fossil fin spines was studied in Romundina stellina, a "placoderm"; Lophosteus superbus, a probable stem-osteichthyan; and sever­­al "acanthodians". The 3D vascularization reconstructed from synchrotron radiation microtomographic data reveal that "acanthodian" and Lophosteus spines grew similarly to what is observed in chondrichthyans, which differs slightly from the growth of the Romundina spine. Chondrichthyans and "acanthodians" also share similarities in their internal organization. Overall, Lophosteus and Romundina spines are more similar in terms of morphology and histology compared to chondrichthyans and "acanthodians". These results support the current hypothesis of gnathostome phylogeny, which places "acanthodians" on the chondrichthyan stem. They also emphasize the need for further study of vertebrate fin spines using 3D approaches.
2

Silurian vertebrates of Gotland (Sweden) and the Baltic Basin

Bremer, Oskar January 2017 (has links)
During the Silurian, the Swedish island Gotland was positioned close to the equator and covered by a shallow sea called the Baltic Basin. The sedimentary rocks (predominantly carbonates) comprising most of the island today were initially formed in this warm sea, and the relatively complete succession of rocks often contains fossil fragments and scales from early vertebrates, including heterostracans, anaspids, thelodonts, osteostracans, acanthodians, and a stem-osteichthyan. Fossils of early vertebrates become increasingly more common in younger Silurian rocks, but are mostly represented by fragmentary remains and rarer occurrences of articulated jawless vertebrates (agnathans). However, the record of articulated specimens and jawed vertebrates (gnathostomes) are more numerous in rocks of the following Devonian Period. Isolated peaks of agnathan diversity during the Silurian and disarticulated remains of gnathostomes from this period hint at a cryptic evolutionary history. A micropaleontological approach with broader sampling may provide a better understanding of early vertebrate distribution patterns and hopefully give some insights into this history. The objective of this study was to build upon previous sampling on Gotland and to use established frameworks for disarticulated remains with the aim of making comparisons with similar studies performed in the East Baltic. However, difficulties locating the collections from these previous works necessitated a different focus. Undescribed museum collections and newly sampled material enabled some taxonomical revisions and greatly improved the understanding of vertebrate distribution in the youngest part of the Gotland sequence. It also indicated that this interval may represent the early stages of the diversification of gnathostomes that become increasingly dominant toward the end of the Silurian. Furthermore, the description of samples from partly coeval sections in Poland enabled some preliminary comparisons outside of Gotland, and presented a striking example of restricted environmental occurrences for a thelodont taxon. This is encouraging for future sampling and investigations on Gotland. Together with the establishment of a facies-framework comparable to that developed in the East Baltic and correlations to other areas, this may prove fruitful for an increased understanding of early vertebrate distribution and evolution during the Silurian.

Page generated in 0.2475 seconds