431 |
Behaviour of continuous concrete beams reinforced with FRP barsEl-Mogy, Mostafa 09 December 2011 (has links)
The non-corrodible nature of FRP bars along with their high strength, light weight and ease of installation made it attractive as reinforcement especially for structures exposed to aggressive environment. In addition, the transparency of FRP bars to magnetic and electrical fields makes them an ideal alternative to traditional steel reinforcement in applications sensitive to electromagnetic fields such as magnetic resonance imaging (MRI) units.
Continuous concrete beams are commonly-used elements in structures such as parking garages and overpasses, which might be exposed to extreme weather conditions and the application of de-icing salts. In such structures, using the non-corrodible FRP bars is a viable alternative to avoid steel-corrosion problems. However, the linear-elastic behaviour of FRP materials makes the ability of continuous beams to redistribute loads and moments questionable. The objective of this research project is to investigate the flexural behaviour of continuous concrete beams reinforced with FRP and their capability of moment redistribution. An experimental program was conducted at the University of Manitoba to realize the research objectives. Ten full-scale continuous concrete beams were constructed and tested to failure in the laboratory. The specimens had a rectangular cross-section of 200×300 mm and continuous over two spans of 2,800 mm each. The main investigated parameters were the amount and material of longitudinal reinforcement, the amount and material of transverse reinforcement and the spacing of used stirrups. The experimental results showed that moment redistribution in FRP-reinforced continuous concrete beams is possible if the reinforcement configuration is chosen properly, and is improved by increasing the amount of transverse reinforcement.
A finite element investigation was conducted using ANSYS-software. A 3-D model was created to simulate the behaviour of continuous beams reinforced with FRP. The model was verified against the experimental results obtained from the present study. This verified model was used to investigate the effect of the concrete compressive strength, longitudinal reinforcement ratio, midspan-to-middle support reinforcement ratio and the amount of transverse reinforcement on the behaviour of FRP-reinforced beams. The analytical results of this parametric investigation along with the experimental results were used to propose an allowable limit for moment redistribution in FRP-reinforced continuous concrete beams.
|
432 |
Image - based Finite Element Analysis of Head Injuries and Helmet DesignLiang, Zhaoyang 22 March 2012 (has links)
Biofidelity of finite element head model (FEHM) includes geometric and material aspects. A FEHM with inhomogeneous material properties was proposed to improve material biofidelity. The proposed FEHM was validated against experimental data and good agreements were observed. The capability of the proposed model in simulating large tissue deformation was also demonstrated. Influences of inhomogeneous material properties on the mechanical responses of head were investigated by comparing with homogeneous material model. The inhomogeneous material properties induce large peak strains in head constituents, which are probably the cause of various brain injuries.
Helmets are effective in preventing head injuries. Parametric studies were conducted to investigate how changes in helmet shell stiffness, foam density and pad thickness influence the performance of a helmet in protecting the brain. Results showed that strain energy absorbed by foam component, contact stress on the interfaces and intracranial responses are significantly affected by foam density and pad thickness.
|
433 |
Design optimization of a microelectromechanical electric field sensor using genetic algorithmsRoy, Mark 24 September 2012 (has links)
This thesis studies the application of a multi-objective niched Pareto genetic algorithm on the design optimization of an electric field mill sensor. The original sensor requires resonant operation. The objective of the algorithm presented is to optimize the geometry eliminating the need for resonant operation which can be difficult to maintain in the presence of an unpredictable changing environment. The algorithm evaluates each design using finite element simulations. A population of sensor designs is evolved towards an optimal Pareto frontier of solutions. Several candidate solutions are selected that offer superior displacement, frequency, and stress concentrations. These designs were modified for fabrication using the PolyMUMPs abrication process but failed to operate due to the process. In order to fabricate the sensors in-house with a silicon-on-glass process, an anodic bonding apparatus has been designed, built, and tested.
|
434 |
Simultaneous Hot And Cold Forging Of Solid CylindersKayaturk, Kursad 01 January 2003 (has links) (PDF)
Forging operations are widely used for manufacturing processes. Forging
process is done hot, warm or cold. All three temperature ranges have advantages
and disadvantages. The aim of this study is to combine the advantages of hot
and cold forging in a flange forming process with cylindirical workpieces in a
single step. The process idea is the partial heating of the workpiece at locations
where large deformations occur and to keep the parts of the workpiece cold at
regions where high precision forming is required. Firstly, the process idea has
been investigated virtually by the finite element method supplying the
theoretical verification of the feasibility of the novel process. By this analysis
also the process limits have been estimated. All analysis are based on an elastoplastic
large strain material law with thermomechanical coupling. The
experimental part of the study served to realize the new process idea and to
verify the process window. In the experimental study two different materials,
three different part geometries and different initial conditions such as
temperature field, lubrication etc. have been investigated. The specifimens are
heated by induction.
|
435 |
Finite Element Analysis Of Composite Laminates Subjected To Axial & / Transverse LoadingBaskin, Cem Ismail 01 June 2004 (has links) (PDF)
This thesis focuses on the investigation of behavior of thick and moderately thick laminates under transverse and horizontal loading for different boundary conditions and configurations. An efficient finite element solution is proposed for analyzing composite laminates. Based on a combination of composite theory and 3-D Elasticity Theory, a 3-D finite element program is developed in MATLAB for calculating the stresses, strains and deformations of composite laminates under transverse and/or horizontal loading for different boundary conditions. The applicability of the formulation to analysis of laminated rubber bearings is also examined in this study. Since it is very important to calculate the correct stress state when developing models for composite behavior, the 3-D Elasticity Theory is used in this research. Numerical results are presented for various problems with different lamination schemes, loading and boundary conditions. In order to verify the analysis and the numerical calculations, numerical solutions obtained in this study are compared with available closed form solutions in the literature, experiment results and a commercial finite element program, namely ANSYS. The results obtained using the present finite element is found to be in acceptable and good agreement with the closed form solutions in the literature for thick and moderately thick rectangular and square plates.
|
436 |
Analysis Of Bolt Production By Metal FormingOnder, Canderim 01 August 2004 (has links) (PDF)
Bolts and rivets are produced by cold forging technique. A great majority of metal
forming companies prefer to use their dexterity rather than science and
technology. The main aim of this thesis is to establish an environment for
developing technology in bolt production by reducing trial and error. In this thesis
finite element method is utilized to model bolt forming for correcting tooling
designs, removing production defects and estimating forging forces. Material
characterization, precise determination of boundary conditions and verification of
numerical results are also investigated. It is shown how efficient the finite element
method is for technology development in metal forming industry. Furthermore,
two anomalies in extrusion process are presented: The hump and the force hill in
extrusion force-displacement curve. Reasons of these two anomalies are studied
using finite element simulations and verified by experiments. Thesis also explains
reduction methods of three-dimensional problems to axisymmetric models and
compares the results.
|
437 |
Design And Analysis Of Filament Wound Composite TubesBalya, Bora 01 December 2004 (has links) (PDF)
This thesis is for the investigation of the design and analysis processes of filament wound composite tubes under combined loading. The problem is studied by using a computational tool based on the Finite Element Method (FEM). Filament wound tubes are modeled as multi layered orthotropic tubes. Several analyses are performed on layered orthotropic tubes by using FEM. Results of the FEM are examined in order to investigate characteristics of filament wound tubes under different combined loading conditions. Winding angle, level of orthotropy and various ratios of the loading conditions were the main concerns of the study. The results of the FEM analysis are discussed for each loading condition. Both pure loading and combined loading analysis results were consistent with the ones mentioned in literature, such as optimum winding angles, optimum loading ratios and optimum level of orthotropy. Modeling parameters, assumptions and source of errors are also discussed. Finally, the required data is obtained for the design of filament wound composite tubes under combined loading.
|
438 |
Friction Analysis In Cold ForgingCora, Omer Necati 01 December 2004 (has links) (PDF)
Friction is one of the important parameters in metal forming processes since it affects metal flow in the die, forming load, strain distribution, tool and die life, surface quality of the product etc. The range of coefficient of friction in different metal forming applications is not well known and the factors affecting variation are ambiguous. Commercially available FEA packages input the coefficient of friction as constant among the whole process which is not a realistic approach.
In this study, utility of user-subroutines is integrated into MSC SuperForm v.2004 and MSC Marc v.2003 FEA packages, to apply a variable coefficient of friction depending on the contact interface conditions. Instead of using comparatively simple friction models such as Coulomb, Shear (constant) models, friction models proposed by Wanheim-Bay and Levanov were used to simulate some cold forging operations. The FEA results are compared with the experimental results available in literature for cylinder upsetting. Results show that, large variation on the coefficient of friction is possible depending on the friction model used, the part geometry and the ratio of contact normal pressure to equivalent yield stress. For the ratio of contact normal pressure to equivalent yield stress values above 4, coefficient of friction values are approximately same for both friction models.
|
439 |
Free Forming Of Locally Laser Heated PartsOzmen, Murat 01 March 2005 (has links) (PDF)
As metals have high formability at elevated temperatures, hot forming is preferred and widely used in manufacturing of complicated geometries. The term hot forming is usually used if the whole workpiece is processed at elevated temperatures. However, for certain products high formability is
required only locally. Forming by local heating is proposed to provide ease of manufacturing of local forms on the workpiece. Also, tools can be simplified by this method. In this study, local laser heating procedures are applied to obtain local forms on cylindrical bulk metal products in a single step. Locally heated workpieces are formed between two flat dies. Both solid and hollow products have been investigated experimentally and by finite element modeling. The experimental studies and finite element analyses are done simultaneously in order to obtain optimum local deformation characteristics. Three different materials together with different initial geometries and various local laser-heating procedures are applied to search for the process window. The limits of applicability are determined and examples of application are supplied.
|
440 |
Design Of A Computer Interface For Automatic Finite Element Analysis Of An Excavator BoomYener, Mehmet 01 May 2005 (has links) (PDF)
The aim of this study is to design a computer interface, which links the user to commercial Finite Element Analysis (FEA) program, MSC.Marc-Mentat to make automatic FE analysis of an excavator boom by using DELPHI as platform. Parametrization of boom geometry is done to add some flexibility to interface called OPTIBOOM. Parametric FE analysis of a boom shortens the design stages and helps to find the optimum design in terms of stresses and mass.
|
Page generated in 0.14 seconds