• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 3
  • 1
  • Tagged with
  • 21
  • 21
  • 17
  • 12
  • 11
  • 10
  • 8
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Behavior of circular concrete columns reinforced with FRP bars and stirrups / Comportement de colonnes circulaires en béton armé de barres et de cadres de PRF

Afifi, Mohammad January 2013 (has links)
The behavior of concrete members reinforced with fiber reinforced polymer (FRP) bars has been the focus of many studies in recent years. Nowadays, several codes and design guidelines are available for the design of concrete structures reinforced with FRP bars under flexural and shear loads. Meanwhile, limited research work has been conducted to examine the axial behavior of reinforced concrete (RC) columns with FRP bars. Due to a lack of research investigating the axial behavior of FRP reinforced concrete columns, North American codes and design guidelines do not recommend using FRP bars as longitudinal reinforcement in columns to resist compressive stresses. This dissertation aims at evaluating the axial performance of RC compression members reinforced with glass FRP (GFRP) and carbon FRP (CFRP) bars and stirrups through experimental and analytical investigations. A total of twenty seven full scale circular RC specimens were fabricated and tested experimentally under concentric axial load. The 300 mm diameter columns were designed according to CAN/CSA S806-12 code requirements. The specimens were divided to three series; series I contains three reference columns; one plain concrete and 2 specimens reinforced with steel reinforcement. Series II contains 12 specimens internally reinforced with GFRP longitudinal bars and transverse GFRP stirrups, while series III includes specimens totally reinforced with CFRP reinforcement. The experimental tests were performed at the structural laboratory, Faculty of Engineering, University of Sherbrooke. The main objective of testing these specimens is to investigate the behavior of circular concrete columns reinforced with GFRP or CFRP longitudinal bars and transverse hoops or spirals reinforcement. Several parameters have been studied; type of reinforcement, longitudinal reinforcement ratio, the volumetric ratios, diameters, and spacing of spiral reinforcement, confinement configuration (spirals versus hoops), and lap length of hoops. The test results of the tested columns were presented and discussed in terms of axial load capacity, mode of failure, concrete, longitudinal, and transverse strains, ductility, load/stress-strain response, and concrete confinement strength through four journal papers presented in this dissertation. Based on the findings of experimental investigation, the GFRP and CFRP RC columns behaved similar to the columns reinforced with steel. It was found that, FRP bars were effective in resisting compression until after crushing of concrete, and contributed on average 8% and 13% of column capacity for GFRP and CFRP RC specimens, respectively. Also, the use of GFRP and CFRP spirals or hoops according to the provisions of CSA S806-12 yielded sufficient restraint against the buckling of the longitudinal FRP bars and provided good confinement of the concrete core in the post-peak stages. The axial deformability (ductility) and confinement efficiency can be better improved by using small FRP spirals with closer spacing rather than larger diameters with greater spacing. It was found that, ignoring the contribution of FRP longitudinal bars in the CAN/CSA S806-12 design equation underestimated the maximum capacity of the tested specimens. Based on this finding, the design equation is modified to accurately predict the ultimate load capacities of FRP RC columns. New factors ?[indice inférieur g] and ?[indice inférieur c] were introduced in the modified equation to account for the GFRP and CFRP bars compressive strength properties as a function in their ultimate tensile strength. On the other hand, proposed equations and confinement model were presented to predict the axial stress-strain behavior of FRP RC columns confined by FRP spirals or hoops. The model takes into account the effect of many parameters such as; type of reinforcement, longitudinal reinforcement ratio; transverse reinforcement configuration; and the volumetric ratio. The proposed model can be used to evaluate the confining pressure, confined concrete core stress, corresponding concrete strain, and stress-strain relationship. The results of analysis using the proposed confinement model were compared with experimental database of twenty four full-scale circular FRP RC columns. A good agreement has been obtained between the analytical and experimental results. Proposed equations to predict both strength and stress-strain behavior of confined columns by FRP reinforcements demonstrate good correlation with test data obtained from full-scale specimens.
2

Glass Fiber Reinforced Polymer Bars as the Top Mat Reinforcement for Bridge Decks

DeFreese, James Michael 20 December 2001 (has links)
The primary objective of this research was to experimentally investigate material and bond properties of three different types of fiber reinforced polymer (FRP) bars, and determine their effect on the design of a bridge deck using FRP bars as the top mat of reinforcement. The properties evaluated include the tensile strength, modulus of elasticity, bond behavior, and maximum bond stress. The experimental program included 47 tensile tests and 42 beam end bond tests performed with FRP bars. Tensile strength of the bars from the tensile testing ranged from 529 MPa to 859 MPa. The average modulus, taken from all the testing, for each type of bar was found to range from 40 GPa to 43.7 GPa. The maximum bond stress from the beam end bond tests ranged from 9.17 MPa to 25 MPa. From the tests, design values were found in areas where the properties investigated were related. These design values include design tensile strength, design modulus of elasticity, bond coefficient for deflection calculations, bond coefficient for crack width calculations, and development length. The results and conclusions address design concerns of the different types of FRP bars as applied in the top mat of reinforcement of a bridge deck. A secondary objective was to evaluate the disparity in results between direct pullout tests, and beam end bond tests. Results from the experimentally performed beam end bond test were compared to previous literature involving the direct pullout tests. Results from the performed beam end bond tests were higher than all of the literature using direct pullout results. No recommendations were given on the disparity between the two test methods. / Master of Science
3

Experimental study on flexural behavior of ECC-concrete composite beams reinforced with FRP bars

Ge, W-J., Ashour, Ashraf, Cao, D-F., Lu, W., Gao, P., Yu, J., Ji, X., Cai, C. 10 October 2018 (has links)
Yes / This paper presents test results of fifteen reinforced engineered cementitious composite (ECC)-concrete beams. The main parameters investigated were the amount and type of reinforcement, and ECC thickness. All reinforced ECC-concrete composite beams tested were classified into four groups according to the amount and type of main longitudinal reinforcement used; three groups were reinforced with FRP, steel and hybrid FRP/steel bars, respectively, having similar tensile capacity, whereas the fourth group had a larger amount of only FRP reinforcement. In each group, four height replacement ratios of ECC to concrete were studied. The test results showed that the moment capacity and stiffness of concrete beams are improved and the crack width can be well controlled when a concrete layer in the tension zone is replaced with an ECC layer of the same thickness. However, the improvement level of ECC-concrete composite beams was controlled by the type and amount of reinforcement used. Based on the simplified constitutive relationships of materials and plane section assumption, three failure modes and their discriminate formulas are developed. Furthermore, simplified formulas for moment capacity calculations are proposed, predicting good agreement with experimental results. / National Natural Science Foundation of China (51678514, 51308490), the Natural Science Foundation of Jiangsu Province, China (BK20130450), Six Talent Peaks Project of Jiangsu Province (JZ-038, 2016), Graduate Practice Innovation Project of Jiangsu Province (SJCX17-0625), the Jiangsu Government Scholarship for Overseas Studies and Top-level Talents Support Project of Yangzhou University.
4

Laboratory Tests of a Bridge Deck Prototype With Glass Fiber Reinforced Polymer Bars as the Top Mat of Reinforcement

Cawrse, Jason Kyle 03 October 2002 (has links)
The primary objective of this project was to test a full-scale prototype of an actual bridge deck containing GFRP bars as the top mat of reinforcement. The purpose of the tests was to verify that the design would resist the loads for which it was designed and provide assurance that the deck would not unexpectedly fail due to the use of this new material. Behavior of the bridge and deck, such as failure load, failure mode, cracking load, crack widths, deflections, and internal stresses, were examined. Four tests were performed on the deck, all of which tested the deck in negative moment regions. From the tests, it was concluded that the design of the deck was very conservative and that unexpected failure should be of no concern. The secondary objective of this project was to comment on the construction of a bridge deck reinforced with GFRP bars and to note its advantages and disadvantages along with a critique of the current state-of-the-art of designing bridge decks with FRP reinforcement. It was found that the advantages of construction with GFRP bars far outweighed the disadvantages, and that the placing of the top mat of GFRP bars was much easier than the placing of the bottom mat of steel bars. It was also concluded that the current state-of-the-art of designing bridge decks reinforced with GFRP is, for the most part, inaccurate in its prediction of behavior and that more research is needed to create more accurate design equations and procedures. Although current methods do not result in accurate predictions of behavior, they do, as mentioned above, result in conservative designs. / Master of Science
5

Flexural behaviour of continuously supported FRP reinforced concrete beams

Habeeb, M. N. January 2011 (has links)
This thesis has investigated the application of CFRP and GFRP bars as longitudinal reinforcement for continuously supported concrete beams. Two series of simply and continuously supported CFRP and GFRP reinforced concrete beams were tested in flexure. In addition, a continuously supported steel reinforced concrete beam was tested for comparison purposes. The FRP reinforced concrete continuous beams were reinforced in a way to accomplish three possible reinforcement combinations at the top and bottom layers of such continuous beams. The experimental results revealed that over-reinforcing the bottom layer of either the simply or continuously supported FRP beams is a key factor in controlling the width and propagation of cracks, enhancing the load capacity, and reducing the deflection of such beams. However, continuous concrete beams reinforced with CFRP bars exhibited a remarkable wide crack over the middle support that significantly influenced their behaviour. The ACI 440.1R-06 equations have been validated against experimental results of beams tested. Comparisons between experimental results and those obtained from simplified methods proposed by the ACI 440 Committee show that ACI 440.1R-06 equations can reasonably predict the load capacity and deflection of the simply and continuously supported GFRP reinforced concrete beams tested. However, The potential capabilities of these equations for predicting the load capacity and deflection of continuous CFRP reinforced concrete beams have, however, been adversely affected by the de-bonding of top CFRP bars from concrete. An analytical technique, which presents an iterative procedure based on satisfying force equilibrium and deformation compatibility conditions, has been introduced in this research. This technique developed a computer program to investigate flexural behaviour in particular the flexural strength and deflection of simple and continuously supported FRP reinforced concrete beams. The analytical modelling program has been compared against different prediction methods, namely ACI 440, the bilinear method, mean moment inertia method and Benmokrane's method. This comparison revealed the reliability of this programme in producing more enhanced results in predicting the behaviour of the FRP reinforced beams more than the above stated methods.
6

Bond and Flexural Behaviour of Self Consolidating Concrete Beams Reinforced and Prestressed with FRP Bars

Krem, Slamah 10 April 2013 (has links)
Self consolidating concrete (SCC) is widely used in the construction industry. SCC is a high performance concrete with high workability and consistency allowing it to flow under its own weight without vibration and making the construction of heavily congested structural elements and narrow sections easier. Fiber reinforced polymer (FRP) reinforcement, with its excellent mechanical properties and non-corrosive characteristic, is being used as a replacement for conventional steel reinforcement. In spite of the wide spread of SCC applications, bond and flexural behaviour of SCC beams reinforced or prestressed with FRP bars has not been fully studied. Furthermore, the ACI 440.1R-06 equation for determining the development length of FRP bars is based on Glass FRP (GFRP) bars and may not be applicable for Carbon FRP (CFRP) bars. This research program included an experimental and analytical study to investigate the flexural and bond behaviour of SCC beams reinforced with FRP bars and SCC beams prestressed with CFRP bars. In the experimental phase, fifty-six beams were fabricated and tested. Sixteen of these beams were prestressed with CFRP bars and forty beams were reinforced with non-prestressed GFRP or CFRP bars. Four concrete batches were used to fabricate all the specimens. Three mixes were of self consolidating concrete (SCC) and one mix was of normal vibrated concrete (NVC). The test parameters for the non-prestressed beams were the concrete type, bar type and bar diameter, concrete cover thickness and embedment length while the test parameters for the prestressed beams were the concrete type and the prestressing level (30%, 45% and 60%). The transfer length of the prestressed CFRP bars was determined by means of longitudinal concrete strain profile and draw-in methods. All beams were tested in four-point bending to failure. Measurements of load, midspan deflection, bar slip if any at the beam ends, strain in reinforcing FRP bar at various locations, and strain in concrete at the beam midspan were collected during the flexural test. The concrete compressive strength at flexural tests of SCC mix-1, mix-2, and mix-3 were 62.1MPa, 49.6MPa and 70.9MPa, respectively and for the NVC mix was 64.5MPa. The material test results showed that SCC mixes had lower modulus of elasticity mechanical properties than the NVC mix. The modulus of elasticity of the SCC mixes ranged between 65% and 82% of the NVC mix. The modulus of rupture of the SCC mixes was 86% of the NVC mixes. The test results for beams prestressed with CFRP bars revealed that the variation of transfer length of CFRP bars in SCC versus their prestressing level was nonlinear. The average measured transfer lengths of 12.7mm diameter CFRP bars prestressed to 30%, 45% and 60% was found to be 25db, 40db, 54db, respectively. Measured transfer lengths of the 12.7mm diameter CFRP bar prestressed to 30% in SCC met the ACI440.4 prediction. However, as the prestressing level increased, the predicted transfer length became unconservative. At a 60% prestress level, the measured/prediction ratio was 1.25. Beams prestressed with CFRP bars and subjected to flexural testing with shear spans less than the minimum development length had local bar slippage within the transmission zone. Beams that experienced local bond slip, their stiffness was significantly decreased. A modification to the existing model used to calculate the transfer and development lengths of CFRP bars in NVC beams was proposed to account for the SCC. The test results for beams reinforced with FRP bars indicated that the average bond strength of CFRP bars in NVC concrete is about 15% higher than that of GFRP bars in NVC. The ACI 440.1R-06 equation overestimated the development length of the CFRP bars by about 40%, while CAN/CSA-S6-06 equation was unconservative by about 50%. A new factor of (1/1.35) was proposed to estimate the development length of the CFRP bars in NVC when the ACI440.1R-06 equation is used. Beams made from SCC showed closer flexural crack spacing than similar beams made from NVC at a similar loading. The deflection of beams made from SCC and reinforced with CFRP bars was found to be slightly larger than those made from NVC. The average bond stresses of GFRP and CFRP bars in SCC were comparable to those in NVC. However, FRP bars embedded in SCC beams had higher bond stresses within the uncracked region of the beams than those embedded in NVC beams. In contrast, FRP bars in SCC had lower bond stresses than FRP bars in NVC within the cracked region. The average bond strength of GFRP in SCC was increased by 15% when the concrete cover thickness increased from 1.0db to 3.0db. Cover thicknesses of 2db and 3db were found to be sufficient to prevent bond splitting failure of GFRP and CFRP bars in SCC, respectively. Bond splitting failure was recorded when the cover thickness dropped to 1.5db for the GRP bars and to 2.0db for the CFRP bars. An insignificant increase in average bond stress was found when the bar diameter decreased from 12.7mm to 6.3mm for the CFRP bars, and a similar increase occurred in GFRP bars when the bar diameter decreased from 15.9mm to 9.5mm. New models to calculate the development length of GFRP and CFRP bars embedded in SCC were proposed based on the experimental results. These models capture the average bond stress profile along the embedment length. A good agreement was found between the proposed model and the experimental results. Analytical modeling of the load-deflection response based on the effective moment of inertia (ISIS Canada M5) was unconservative for SCC beams reinforced with CFRP bars by 25% at ultimate loading. A new model for bond stress versus Ma/Mcr (applied moment to cracking moment) ratio was developed for GFRP and CFRP bars in SCC and for CFRP bars in NVC. These bond stress models were incorporated in a new rigorous model to predict the load-deflection response based on the curvature approach. The FRP bar extension and bond stress models were used to calculate the load-deflection response. With these models 90% of the calculated deflections were found to be within ± 15% of the experimental measured results for SCC beams reinforced with FRP bars. Analytical modeling of the load-deflection for NVC and SCC beams prestressed with CFRP bars are proposed done. The moment resistance was calculated using Sectional Analysis approach. The deflection was calculated using simplified and detailed methods. The simplified method was based on the effective moment of inertia while the detailed method was based on effective moment of inertia and effective centroid. The experimental results correlated well with the detailed method at higher loads range. This study provided an understanding of the mechanism of bond and flexural behaviour of FRP reinforced and prestressed SCC beams. The information presented in this thesis is valuable for designers using FRP bars as flexural reinforcement and also for the development of design guidelines for SCC structures.
7

Behaviour of continuous concrete beams reinforced with FRP bars

El-Mogy, Mostafa 09 December 2011 (has links)
The non-corrodible nature of FRP bars along with their high strength, light weight and ease of installation made it attractive as reinforcement especially for structures exposed to aggressive environment. In addition, the transparency of FRP bars to magnetic and electrical fields makes them an ideal alternative to traditional steel reinforcement in applications sensitive to electromagnetic fields such as magnetic resonance imaging (MRI) units. Continuous concrete beams are commonly-used elements in structures such as parking garages and overpasses, which might be exposed to extreme weather conditions and the application of de-icing salts. In such structures, using the non-corrodible FRP bars is a viable alternative to avoid steel-corrosion problems. However, the linear-elastic behaviour of FRP materials makes the ability of continuous beams to redistribute loads and moments questionable. The objective of this research project is to investigate the flexural behaviour of continuous concrete beams reinforced with FRP and their capability of moment redistribution. An experimental program was conducted at the University of Manitoba to realize the research objectives. Ten full-scale continuous concrete beams were constructed and tested to failure in the laboratory. The specimens had a rectangular cross-section of 200×300 mm and continuous over two spans of 2,800 mm each. The main investigated parameters were the amount and material of longitudinal reinforcement, the amount and material of transverse reinforcement and the spacing of used stirrups. The experimental results showed that moment redistribution in FRP-reinforced continuous concrete beams is possible if the reinforcement configuration is chosen properly, and is improved by increasing the amount of transverse reinforcement. A finite element investigation was conducted using ANSYS-software. A 3-D model was created to simulate the behaviour of continuous beams reinforced with FRP. The model was verified against the experimental results obtained from the present study. This verified model was used to investigate the effect of the concrete compressive strength, longitudinal reinforcement ratio, midspan-to-middle support reinforcement ratio and the amount of transverse reinforcement on the behaviour of FRP-reinforced beams. The analytical results of this parametric investigation along with the experimental results were used to propose an allowable limit for moment redistribution in FRP-reinforced continuous concrete beams.
8

Behaviour of continuous concrete beams reinforced with FRP bars

El-Mogy, Mostafa 09 December 2011 (has links)
The non-corrodible nature of FRP bars along with their high strength, light weight and ease of installation made it attractive as reinforcement especially for structures exposed to aggressive environment. In addition, the transparency of FRP bars to magnetic and electrical fields makes them an ideal alternative to traditional steel reinforcement in applications sensitive to electromagnetic fields such as magnetic resonance imaging (MRI) units. Continuous concrete beams are commonly-used elements in structures such as parking garages and overpasses, which might be exposed to extreme weather conditions and the application of de-icing salts. In such structures, using the non-corrodible FRP bars is a viable alternative to avoid steel-corrosion problems. However, the linear-elastic behaviour of FRP materials makes the ability of continuous beams to redistribute loads and moments questionable. The objective of this research project is to investigate the flexural behaviour of continuous concrete beams reinforced with FRP and their capability of moment redistribution. An experimental program was conducted at the University of Manitoba to realize the research objectives. Ten full-scale continuous concrete beams were constructed and tested to failure in the laboratory. The specimens had a rectangular cross-section of 200×300 mm and continuous over two spans of 2,800 mm each. The main investigated parameters were the amount and material of longitudinal reinforcement, the amount and material of transverse reinforcement and the spacing of used stirrups. The experimental results showed that moment redistribution in FRP-reinforced continuous concrete beams is possible if the reinforcement configuration is chosen properly, and is improved by increasing the amount of transverse reinforcement. A finite element investigation was conducted using ANSYS-software. A 3-D model was created to simulate the behaviour of continuous beams reinforced with FRP. The model was verified against the experimental results obtained from the present study. This verified model was used to investigate the effect of the concrete compressive strength, longitudinal reinforcement ratio, midspan-to-middle support reinforcement ratio and the amount of transverse reinforcement on the behaviour of FRP-reinforced beams. The analytical results of this parametric investigation along with the experimental results were used to propose an allowable limit for moment redistribution in FRP-reinforced continuous concrete beams.
9

Bond and Flexural Behaviour of Self Consolidating Concrete Beams Reinforced and Prestressed with FRP Bars

Krem, Slamah 10 April 2013 (has links)
Self consolidating concrete (SCC) is widely used in the construction industry. SCC is a high performance concrete with high workability and consistency allowing it to flow under its own weight without vibration and making the construction of heavily congested structural elements and narrow sections easier. Fiber reinforced polymer (FRP) reinforcement, with its excellent mechanical properties and non-corrosive characteristic, is being used as a replacement for conventional steel reinforcement. In spite of the wide spread of SCC applications, bond and flexural behaviour of SCC beams reinforced or prestressed with FRP bars has not been fully studied. Furthermore, the ACI 440.1R-06 equation for determining the development length of FRP bars is based on Glass FRP (GFRP) bars and may not be applicable for Carbon FRP (CFRP) bars. This research program included an experimental and analytical study to investigate the flexural and bond behaviour of SCC beams reinforced with FRP bars and SCC beams prestressed with CFRP bars. In the experimental phase, fifty-six beams were fabricated and tested. Sixteen of these beams were prestressed with CFRP bars and forty beams were reinforced with non-prestressed GFRP or CFRP bars. Four concrete batches were used to fabricate all the specimens. Three mixes were of self consolidating concrete (SCC) and one mix was of normal vibrated concrete (NVC). The test parameters for the non-prestressed beams were the concrete type, bar type and bar diameter, concrete cover thickness and embedment length while the test parameters for the prestressed beams were the concrete type and the prestressing level (30%, 45% and 60%). The transfer length of the prestressed CFRP bars was determined by means of longitudinal concrete strain profile and draw-in methods. All beams were tested in four-point bending to failure. Measurements of load, midspan deflection, bar slip if any at the beam ends, strain in reinforcing FRP bar at various locations, and strain in concrete at the beam midspan were collected during the flexural test. The concrete compressive strength at flexural tests of SCC mix-1, mix-2, and mix-3 were 62.1MPa, 49.6MPa and 70.9MPa, respectively and for the NVC mix was 64.5MPa. The material test results showed that SCC mixes had lower modulus of elasticity mechanical properties than the NVC mix. The modulus of elasticity of the SCC mixes ranged between 65% and 82% of the NVC mix. The modulus of rupture of the SCC mixes was 86% of the NVC mixes. The test results for beams prestressed with CFRP bars revealed that the variation of transfer length of CFRP bars in SCC versus their prestressing level was nonlinear. The average measured transfer lengths of 12.7mm diameter CFRP bars prestressed to 30%, 45% and 60% was found to be 25db, 40db, 54db, respectively. Measured transfer lengths of the 12.7mm diameter CFRP bar prestressed to 30% in SCC met the ACI440.4 prediction. However, as the prestressing level increased, the predicted transfer length became unconservative. At a 60% prestress level, the measured/prediction ratio was 1.25. Beams prestressed with CFRP bars and subjected to flexural testing with shear spans less than the minimum development length had local bar slippage within the transmission zone. Beams that experienced local bond slip, their stiffness was significantly decreased. A modification to the existing model used to calculate the transfer and development lengths of CFRP bars in NVC beams was proposed to account for the SCC. The test results for beams reinforced with FRP bars indicated that the average bond strength of CFRP bars in NVC concrete is about 15% higher than that of GFRP bars in NVC. The ACI 440.1R-06 equation overestimated the development length of the CFRP bars by about 40%, while CAN/CSA-S6-06 equation was unconservative by about 50%. A new factor of (1/1.35) was proposed to estimate the development length of the CFRP bars in NVC when the ACI440.1R-06 equation is used. Beams made from SCC showed closer flexural crack spacing than similar beams made from NVC at a similar loading. The deflection of beams made from SCC and reinforced with CFRP bars was found to be slightly larger than those made from NVC. The average bond stresses of GFRP and CFRP bars in SCC were comparable to those in NVC. However, FRP bars embedded in SCC beams had higher bond stresses within the uncracked region of the beams than those embedded in NVC beams. In contrast, FRP bars in SCC had lower bond stresses than FRP bars in NVC within the cracked region. The average bond strength of GFRP in SCC was increased by 15% when the concrete cover thickness increased from 1.0db to 3.0db. Cover thicknesses of 2db and 3db were found to be sufficient to prevent bond splitting failure of GFRP and CFRP bars in SCC, respectively. Bond splitting failure was recorded when the cover thickness dropped to 1.5db for the GRP bars and to 2.0db for the CFRP bars. An insignificant increase in average bond stress was found when the bar diameter decreased from 12.7mm to 6.3mm for the CFRP bars, and a similar increase occurred in GFRP bars when the bar diameter decreased from 15.9mm to 9.5mm. New models to calculate the development length of GFRP and CFRP bars embedded in SCC were proposed based on the experimental results. These models capture the average bond stress profile along the embedment length. A good agreement was found between the proposed model and the experimental results. Analytical modeling of the load-deflection response based on the effective moment of inertia (ISIS Canada M5) was unconservative for SCC beams reinforced with CFRP bars by 25% at ultimate loading. A new model for bond stress versus Ma/Mcr (applied moment to cracking moment) ratio was developed for GFRP and CFRP bars in SCC and for CFRP bars in NVC. These bond stress models were incorporated in a new rigorous model to predict the load-deflection response based on the curvature approach. The FRP bar extension and bond stress models were used to calculate the load-deflection response. With these models 90% of the calculated deflections were found to be within ± 15% of the experimental measured results for SCC beams reinforced with FRP bars. Analytical modeling of the load-deflection for NVC and SCC beams prestressed with CFRP bars are proposed done. The moment resistance was calculated using Sectional Analysis approach. The deflection was calculated using simplified and detailed methods. The simplified method was based on the effective moment of inertia while the detailed method was based on effective moment of inertia and effective centroid. The experimental results correlated well with the detailed method at higher loads range. This study provided an understanding of the mechanism of bond and flexural behaviour of FRP reinforced and prestressed SCC beams. The information presented in this thesis is valuable for designers using FRP bars as flexural reinforcement and also for the development of design guidelines for SCC structures.
10

Field Test of a Bridge Deck with Glass Fiber Reinforced Polymer Bars as the Top Mat of Reinforcement

Harlan, Matthew 07 July 2004 (has links)
The primary objective of this research project was to perform live load tests on a bridge deck with GFRP reinforcement in the field under service conditions. The strains and deflections in the span reinforced with GFRP in the top mat were recorded under a series of truck crossings, and these were compared to the span reinforced with all steel bars under identical loading conditions, as well as design values and other test results. Transverse strains in the GFRP bars, girder distribution factors, girder bottom flange strains, dynamic load allowances, and weigh-in-motion gauge results were examined. From the live load tests, it was concluded that the bridge was designed conservatively for service loads, with measured strains, stresses, distribution factors, and impact factors below allowables and design values. The second objective was to monitor the construction of the bridge deck. To carry out this objective, researchers from Virginia Tech were on site during the bridge deck phase of the construction. The construction crews were observed while installing both the all-steel end span and the steel bottom/GFRP top end span. The installation of the GFRP bars went smoothly when compared to that of the steel bars. The workers were unfamiliar with the material at first, but by the end of the day were handling, installing, and tying the GFRP bars with skill. It was concluded that GFRP bars are an acceptable material in bridge deck applications with respect to constructibility issues. The third objective was to set up the long term monitoring and data collection of the bridge deck. Electrical resistance strain gauges, vibrating wire strain gauges, and thermocouples were installed in the deck prior to concrete casting to provide strain and temperature readings throughout the service life of the bridge. It was concluded that the span reinforced with GFRP was instrumented sufficiently for long-term health monitoring. / Master of Science

Page generated in 0.0545 seconds