• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Laboratory Tests of a Bridge Deck Prototype With Glass Fiber Reinforced Polymer Bars as the Top Mat of Reinforcement

Cawrse, Jason Kyle 03 October 2002 (has links)
The primary objective of this project was to test a full-scale prototype of an actual bridge deck containing GFRP bars as the top mat of reinforcement. The purpose of the tests was to verify that the design would resist the loads for which it was designed and provide assurance that the deck would not unexpectedly fail due to the use of this new material. Behavior of the bridge and deck, such as failure load, failure mode, cracking load, crack widths, deflections, and internal stresses, were examined. Four tests were performed on the deck, all of which tested the deck in negative moment regions. From the tests, it was concluded that the design of the deck was very conservative and that unexpected failure should be of no concern. The secondary objective of this project was to comment on the construction of a bridge deck reinforced with GFRP bars and to note its advantages and disadvantages along with a critique of the current state-of-the-art of designing bridge decks with FRP reinforcement. It was found that the advantages of construction with GFRP bars far outweighed the disadvantages, and that the placing of the top mat of GFRP bars was much easier than the placing of the bottom mat of steel bars. It was also concluded that the current state-of-the-art of designing bridge decks reinforced with GFRP is, for the most part, inaccurate in its prediction of behavior and that more research is needed to create more accurate design equations and procedures. Although current methods do not result in accurate predictions of behavior, they do, as mentioned above, result in conservative designs. / Master of Science
2

Field Test of a Bridge Deck with Glass Fiber Reinforced Polymer Bars as the Top Mat of Reinforcement

Harlan, Matthew 07 July 2004 (has links)
The primary objective of this research project was to perform live load tests on a bridge deck with GFRP reinforcement in the field under service conditions. The strains and deflections in the span reinforced with GFRP in the top mat were recorded under a series of truck crossings, and these were compared to the span reinforced with all steel bars under identical loading conditions, as well as design values and other test results. Transverse strains in the GFRP bars, girder distribution factors, girder bottom flange strains, dynamic load allowances, and weigh-in-motion gauge results were examined. From the live load tests, it was concluded that the bridge was designed conservatively for service loads, with measured strains, stresses, distribution factors, and impact factors below allowables and design values. The second objective was to monitor the construction of the bridge deck. To carry out this objective, researchers from Virginia Tech were on site during the bridge deck phase of the construction. The construction crews were observed while installing both the all-steel end span and the steel bottom/GFRP top end span. The installation of the GFRP bars went smoothly when compared to that of the steel bars. The workers were unfamiliar with the material at first, but by the end of the day were handling, installing, and tying the GFRP bars with skill. It was concluded that GFRP bars are an acceptable material in bridge deck applications with respect to constructibility issues. The third objective was to set up the long term monitoring and data collection of the bridge deck. Electrical resistance strain gauges, vibrating wire strain gauges, and thermocouples were installed in the deck prior to concrete casting to provide strain and temperature readings throughout the service life of the bridge. It was concluded that the span reinforced with GFRP was instrumented sufficiently for long-term health monitoring. / Master of Science
3

Deflection of concrete structures reinforced with FRP bars.

Kara, Ilker F., Ashour, Ashraf, Dundar, C. 01 1900 (has links)
yes / This paper presents an analytical procedure based on the stiffness matrix method for deflection prediction of concrete structures reinforced with fiber reinforced polymer (FRP) bars. The variation of flexural stiffness of cracked FRP reinforced concrete members has been evaluated using various available models for the effective moment of inertia. A reduced shear stiffness model was also employed to account for the variation of shear stiffness in cracked regions. Comparisons between results obtained from the proposed analytical procedure and experiments of simply and continuously supported FRP reinforced concrete beams show good agreement. Bottom FRP reinforcement at midspan section has a significant effect on the reduction of FRP reinforced concrete beam deflections. The shear deformation effect was found to be more influential in continuous FRP reinforced concrete beams than simply supported beams. The proposed analytical procedure forms the basis for the analysis of concrete frames reinforced with FRP concrete members.
4

Shear Strength and Strength Degradation of Concrete Bridge Decks with GFRP Top Mat Reinforcement

Amico, Ross Dominick 05 August 2005 (has links)
The primary objective of this research was to investigate the shear strength of concrete bridge decks with GFRP top-mat reinforcement. Several models currently exist to predict the shear strength during the design process; however, previous research at Virginia Tech indicates that the existing equations are overly conservative. For this research, a series of concrete decks with varying lengths were tested in a laboratory environment in a two-span continuous configuration, during which data was collected on deflections, rebar strain, crack widths, and ultimate load. It was concluded that the existing equations, particularly the guidelines of ACI 440, are grossly over-conservative for GFRP-reinforced concrete bridge decks continuous over multiple supports. It was suggested that this is due to multiple factors, including additional support provided by the typically-neglected steel reinforcement in the bottom mat and a higher shear strength of the uncracked portion of concrete due to higher compressive stresses in the section as a result of the continuous deck configuration. The second objective of this research was to investigate the effects of environmental exposure on the composite deck and the individual GFRP rebar. Three deck specimens were subjected to differing environmental conditions, including one that was placed into service at an interstate weigh station. All three decks were tested in the same manner as those in the shear investigation. Additionally, live load tests were conducted on the weigh station deck during the time it was in place and tensile tests were conducted on rebar that were extracted from the concrete decks. In the live load testing, the GFRP strains increased by more than 200% over the period of service, which was likely due to a combination of a reduction in GFRP stiffness and a greater amount of cracking. During the laboratory tests on the decks, no clear correlation between conditioning and deflections or cracking was found. The ultimate strength actually increased with conditioning, with the weigh station specimen exhibiting the highest shear strength. Finally, the results of the rebar tensile tests suggested a decrease in both modulus of elasticity and ultimate tensile strength of the GFRP with environmental exposure when compared to unconditioned bars. / Master of Science
5

Performance of a Bridge Deck with Glass Fiber Reinforced Polymer (GFRP) Bars as the Top Mat of Reinforcement

Phillips, Kimberly Ann 21 December 2004 (has links)
The purpose of this research was to investigate the effectiveness and durability of GFRP bars as reinforcement for concrete decks. Today's rapid bridge deck deterioration is calling for a replacement for steel reinforcement. The advantages of GFRP such as its high tensile strength, light weight, and resistance to corrosion make it an attractive alternative to steel. The first objective of this research was to perform live load testing on a bridge deck reinforced with GFRP in one span and steel in the other. The results were compared to the findings from the initial testing performed one year earlier. The strains and deflections of the bridge deck were recorded and the two spans compared. Transverse stresses in the GFRP bars, girder distribution factors, and dynamic load allowances were calculated for both spans. From the live load tests, it was concluded that the GFRP-reinforced span results were within design parameters. The only concern was the increased impact factor values. The second objective was to perform live load tests on a slab reinforced with GFRP installed at a weigh station. Two live load tests were performed approximately five months apart. Peak strains in the GFRP and steel bars were recorded and compared. The peak stresses had increased over time but were within design allowable stress limits. The third objective of this research was to investigate the long term behavior and durability of the GFRP reinforcing bars cast in a concrete deck. The strain gauges, vibrating wire gauges, and thermocouples in the bridge deck were monitored for approximately one year using a permanent data acquisition system. Daily, monthly, and long term fluctuations in temperature and stresses were examined. It was concluded that the vibrating wire gauges were more reliable than the electrical resistance strain gauges. It was further observed that the main influence over strain changes was temperature fluctuations. / Master of Science
6

Glass Fiber Reinforced Polymer Bars as the Top Mat Reinforcement for Bridge Decks

DeFreese, James Michael 20 December 2001 (has links)
The primary objective of this research was to experimentally investigate material and bond properties of three different types of fiber reinforced polymer (FRP) bars, and determine their effect on the design of a bridge deck using FRP bars as the top mat of reinforcement. The properties evaluated include the tensile strength, modulus of elasticity, bond behavior, and maximum bond stress. The experimental program included 47 tensile tests and 42 beam end bond tests performed with FRP bars. Tensile strength of the bars from the tensile testing ranged from 529 MPa to 859 MPa. The average modulus, taken from all the testing, for each type of bar was found to range from 40 GPa to 43.7 GPa. The maximum bond stress from the beam end bond tests ranged from 9.17 MPa to 25 MPa. From the tests, design values were found in areas where the properties investigated were related. These design values include design tensile strength, design modulus of elasticity, bond coefficient for deflection calculations, bond coefficient for crack width calculations, and development length. The results and conclusions address design concerns of the different types of FRP bars as applied in the top mat of reinforcement of a bridge deck. A secondary objective was to evaluate the disparity in results between direct pullout tests, and beam end bond tests. Results from the experimentally performed beam end bond test were compared to previous literature involving the direct pullout tests. Results from the performed beam end bond tests were higher than all of the literature using direct pullout results. No recommendations were given on the disparity between the two test methods. / Master of Science
7

Flexural behavior of ECC–concrete hybrid composite beams reinforced with FRP and steel bars

Ge, W-J., Ashour, Ashraf, Yu, J., Gao, P., Cao, D-F., Cai, C., Ji, X. 09 November 2018 (has links)
Yes / This paper aims to investigate the flexural behavior of engineered cementitious composite (ECC)-concrete hybrid composite beams reinforced with fiber reinforced polymer (FRP) bars and steel bars. Thirty two hybrid reinforced composite beams having various ECC height replacement ratio and combinations of FRP and steel reinforcements were experimentally tested to failure in flexure. Test results showed that cracking, yield and ultimate moments as well as the stiffness of hybrid and ECC beams are improved compared with traditional concrete beams having the same reinforcement, owing to the excellent tensile properties of ECC materials. The average crack spacing and width decrease with the increase of ECC height replacement ratio. The ductility of hybrid reinforced composite beams is higher than that of traditional reinforced concrete beams while their practical reinforcement ratios are similar. Reinforced ECC beams show considerable energy dissipation capacity owing to ECC’s excellent deformation ability. Considering the constitutive models of materials, compatibility and equilibrium conditions, formulas for the prediction of cracking, yield and ultimate moments as well as deflections of hybrid reinforced ECC-concrete composite beams are developed. The proposed formulas are in good agreement with the experimental results. A comprehensive parametric analysis is, then, conducted to illustrate the effect of reinforcement, ECC and concrete properties on the moment capacity, curvature, ductility and energy dissipation of composite beams. / National Natural Science Foundation of China (51678514, 51308490), the Natural Science Foundation of Jiangsu Province, China (BK20130450), Six Talent Peaks Project of Jiangsu Province (JZ-038, 2016), Graduate Practice Innovation Project of Jiangsu Province (SJCX17-0625), the Jiangsu Government Scholarship for Overseas Studies and Top-level Talents Support Project of Yangzhou University
8

Machine learning predictions for bending capacity of ECC-concrete composite beams hybrid reinforced with steel and FRP bars

Ge, W., Zhang, F, Wang, Y., Ashour, Ashraf, Luo, L., Qiu, L., Fu, S., Cao, D. 31 August 2024 (has links)
Yes / This paper explores the development of the most suitable machine learning models for predicting the bending capacity of steel and FRP (Fiber Reinforced Ploymer) bars hybrid reinforced ECC (Engineered Cementitious Composites)-concrete composite beams. Five different machine learning models, namely Support Vector Regression (SVR), Extreme Gradient Boosting (XGBoost), Multilayer Perceptron (MLP), Random Forest (RF), and Extremely Randomized Trees (ERT), were employed. To train and evaluate these predictive models, the study utilized a database comprising 150 experimental data points from the literature on steel and FRP bars hybrid reinforced ECC-concrete composite beams. Additionally, Shapley Additive Explanations (SHAP) analysis was employed to assess the impact of input features on the prediction outcomes. Furthermore, based on the optimal model identified in the research, a graphical user interface (GUI) was designed to facilitate the analysis of the bending capacity of hybrid reinforced ECC-concrete composite beams in practical applications. The results indicate that the XGBoost algorithm exhibits high accuracy in predicting bending capacity, demonstrating the lowest root mean square error, mean absolute error, and mean absolute percentage error, as well as the highest coefficient of determination on the testing dataset among all models. SHAP analysis indicates that the equivalent reinforcement ratio, design strength of FRP bars, and height of beam cross-section are significant feature parameters, while the influence of the compressive strength of concrete is minimal. The predictive models and graphical user interface (GUI) developed can offer engineers and researchers with a reliable predictive method for the bending capacity of steel and FRP bars hybrid reinforced ECC-concrete composite beams.

Page generated in 0.0869 seconds