1 |
The Euler equations and a differentiation process for a generalized Finsler spaceCraig, Homer Vincent, January 1929 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1929. / Typescript with manuscript equations. With this are bound: On the solution of the Euler equations for their highest derivatives / by H.V. Craig. Reprinted from Bulletin of the American Mathematical Society, vol. 36 (Aug. 1930), p. [558]-562 -- On parallel displacement in a non-Finsler space / by H.V. Craig. Reprinted from Transactions of the American Mathematical Society, vol. 33, no. 1, p. 125-142. Includes bibliographical references (leaves 29-30).
|
2 |
The hyperspin structure of Einstein universes and their neutrino spectrumHolm, Christian 08 1900 (has links)
No description available.
|
3 |
Finsler Geometry And Its Applications ToelectromagnetismCagil, Ayse 01 January 2003 (has links) (PDF)
In this thesis Finsler geometry is extensively reviewed. The geometrization of
fields by a Finslerian approach is considered. Also unification of electrodynamics
and gravitation with suitable Finslerian metrics is examined.
|
4 |
Riemannian, Finslerian and Conventionalist representation of gravitational theories and solar system testsTavakol, Reza Khodadadegan January 1975 (has links)
No description available.
|
5 |
A new Laplace operator in Finsler geometry and periodic orbits of Anosov flowsBarthelm��, Thomas 24 January 2012 (has links) (PDF)
In the first part of this dissertation, we give a new definition of a Laplace operator for Finsler metric as an average, with regard to an angle measure, of the second directional derivatives. This operator is elliptic, symmetric with respect to the Holmes-Thompson volume, and coincides with the usual Laplace--Beltrami operator when the Finsler metric is Riemannian. We compute explicit spectral data for some Katok-Ziller metrics. When the Finsler metric is negatively curved, we show, thanks to a result of Ancona that the Martin boundary is H��lder-homeomorphic to the visual boundary. This allow us to deduce the existence of harmonic measures and some ergodic preoperties. In the second part of this dissertation, we study Anosov flows in 3-manifolds, with leaf-spaces homeomorphic to .... When the manifold is hyperbolic, Thurston showed that the (un)stable foliations induces an "orthogonal" flow. We use this second flow to study isotopy class of periodic orbits of the Anosov flow and existence of embedded cylinders.
|
6 |
A new Laplace operator in Finsler geometry and periodic orbits of Anosov flowsBarthelm��, Thomas 24 January 2012 (has links) (PDF)
In the first part of this dissertation, we give a new definition of a Laplace operator for Finsler metric as an average, with regard to an angle measure, of the second directional derivatives. This operator is elliptic, symmetric with respect to the Holmes-Thompson volume, and coincides with the usual Laplace--Beltrami operator when the Finsler metric is Riemannian. We compute explicit spectral data for some Katok-Ziller metrics. When the Finsler metric is negatively curved, we show, thanks to a result of Ancona that the Martin boundary is H��lder-homeomorphic to the visual boundary. This allow us to deduce the existence of harmonic measures and some ergodic preoperties. In the second part of this dissertation, we study Anosov flows in 3-manifolds, with leaf-spaces homeomorphic to .... When the manifold is hyperbolic, Thurston showed that the (un)stable foliations induces an "orthogonal" flow. We use this second flow to study isotopy class of periodic orbits of the Anosov flow and existence of embedded cylinders.
|
7 |
A new Laplace operator in Finsler geometry and periodic orbits of Anosov flowsBarthelmé, Thomas 24 January 2012 (has links) (PDF)
In the first part of this dissertation, we give a new definition of a Laplace operator for Finsler metric as an average, with regard to an angle measure, of the second directional derivatives. This operator is elliptic, symmetric with respect to the Holmes-Thompson volume, and coincides with the usual Laplace--Beltrami operator when the Finsler metric is Riemannian. We compute explicit spectral data for some Katok-Ziller metrics. When the Finsler metric is negatively curved, we show, thanks to a result of Ancona that the Martin boundary is Hölder-homeomorphic to the visual boundary. This allow us to deduce the existence of harmonic measures and some ergodic preoperties. In the second part of this dissertation, we study Anosov flows in 3-manifolds, with leaf-spaces homeomorphic to .... When the manifold is hyperbolic, Thurston showed that the (un)stable foliations induces an "orthogonal" flow. We use this second flow to study isotopy class of periodic orbits of the Anosov flow and existence of embedded cylinders.
|
8 |
A new Laplace operator in Finsler geometry and periodic orbits of Anosov flows / Un nouvel opérateur de Laplace en géométrie de Finsler et orbites périodiques de flots d'AnosovBarthelmé, Thomas 24 January 2012 (has links)
Dans la première partie de cette thèse, nous introduisons une nouvelle généralisation de l'opérateur de Laplace en géométrie de Finsler. Cette opérateur est défini en intégrant le long des fibres les dérivées directionnelles secondes d'une fonction par rapport à une mesure d'angle que nous construisons. Nous obtenons un opérateur différentiel d'ordre ..., elliptique, symétrique, et qui admet une bonne théorie spectrale. Nous calculons des exemples explicites de spectres pour des métriques de Katok-Ziller. En courbure négative, nous prouvons, grâce à un théorème d'Ancona que la frontière de Martin est Hölder-homéomorphe à la frontière visuelle. Ceci nous permet de déduire l'existence et l'ergodicité des mesures harmoniques pour cet opérateur. Dans la seconde partie, nous étudions les flots d'Anosov en dimension ... dont l'espace des feuilles est homéomorphe à .... Lorsque la variété est hyperbolique, Thurston démontra que le feuilletage (in)stable induit un flot ''orthogonal'' au premier. Nous utilisons ce second flot pour étudier les classes d'isotopie d'orbites périodiques du flot d'Anosov, ainsi que l'existence de cylindres plongés. / In the first part of this dissertation, we give a new definition of a Laplace operator for Finsler metric as an average, with regard to an angle measure, of the second directional derivatives. This operator is elliptic, symmetric with respect to the Holmes-Thompson volume, and coincides with the usual Laplace--Beltrami operator when the Finsler metric is Riemannian. We compute explicit spectral data for some Katok-Ziller metrics. When the Finsler metric is negatively curved, we show, thanks to a result of Ancona that the Martin boundary is Hölder-homeomorphic to the visual boundary. This allow us to deduce the existence of harmonic measures and some ergodic preoperties. In the second part of this dissertation, we study Anosov flows in 3-manifolds, with leaf-spaces homeomorphic to .... When the manifold is hyperbolic, Thurston showed that the (un)stable foliations induces an "orthogonal" flow. We use this second flow to study isotopy class of periodic orbits of the Anosov flow and existence of embedded cylinders.
|
9 |
Calculo estocastico em variedades FinslerSilva Júnior, Rinaldo Vieira da, 1981- 17 February 2005 (has links)
Orientador: Paulo Regis Caron Ruffino / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-04T02:49:45Z (GMT). No. of bitstreams: 1
SilvaJunior_RinaldoVieirada_M.pdf: 1586291 bytes, checksum: 8d01bdf434ecba2fb62a57725c46dd4a (MD5)
Previous issue date: 2005 / Resumo: Nesta dissertação fizemos um estudo da teoria de difusão em variedades Finsler, onde abor-damos o transporte paralelo estocástico, desenvolvimento estocástico de Cartan e Movimento Browniano. O objetivo principal é obter uma descrição mais geométrica dos objetos citados acima ainda que por enquanto em coordenadas locais e assim termos um paralelo entre o cálculo estocástico em variedades Riemannianas e variedades Finsler / Abstract: In this work we study diffusion theory in Finsler manifolds. It includes the stochastic par-allel transport, stochastic Cartan development and Brownian motion. The main objective is to provide a geometric description of the objects mentioned and 50 to draw a compari-50n between stochastic calculus in Riemannian manifolds and stochastic calculus in Finsler manifolds / Mestrado / Matematica / Mestre em Matemática
|
10 |
Geometria de Finsler, cálculo de variações e equação de onda / Finsler geometry, calculus of variations and wave equationOtero, Diego Mano 16 August 2018 (has links)
Orientadores: Carlos Eduardo Durán Fernandez, Márcio Antônio de Faria Rosa / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Cientifica / Made available in DSpace on 2018-08-16T14:48:33Z (GMT). No. of bitstreams: 1
ManoOtero_Diego_M.pdf: 1221591 bytes, checksum: 33ae6e3b671523a9602f3398e14d4fb7 (MD5)
Previous issue date: 2010 / Resumo: A motivação inicial deste trabalho foi tentar relacionar os conceitos de geometria de Finsler com situações físicas que temos uma certa dependência de direções no nosso espaço. Apresentamos o conceito do cálculo variacional em variedades e sua relação com as geodésicas. Estudamos também o operador laplaciano ?? para espaços de Minkowski, que generaliza o caso Euclideano, e mais especificamente o problema...Observação: O resumo, na íntegra poderá ser visualizado no texto completo da tese digital / Abstract: The initial motivation of this study was to try to relate the concepts of Finsler geometry with physical situations where we have a certain dependence on the directions of our space. We introduce the concept of variational calculus on manifolds and their relationship with the geodesics. We also studied the Laplacian operator ?? in Minkowski space, which generalizes the Euclidean case, and more specifically the problem ...Note: The complete abstract is available with the full electronic digital thesis or dissertations. / Mestrado / Geometria / Mestre em Matemática
|
Page generated in 0.0448 seconds