• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 37
  • 37
  • 16
  • 14
  • 13
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sobre a origem das simetrias internas

Odon, Pedro Ivo 22 September 2006 (has links)
Dissertação (mestrado)—Universidade de Brasília, Instituto de Física, 2006. / Submitted by Jaqueline Ferreira de Souza (jaquefs.braz@gmail.com) on 2011-06-20T19:06:35Z No. of bitstreams: 1 2006_PedroIvoOdon.pdf: 579870 bytes, checksum: 55dc44395e09babf40119ff24f982e68 (MD5) / Approved for entry into archive by Jaqueline Ferreira de Souza(jaquefs.braz@gmail.com) on 2011-06-20T19:08:46Z (GMT) No. of bitstreams: 1 2006_PedroIvoOdon.pdf: 579870 bytes, checksum: 55dc44395e09babf40119ff24f982e68 (MD5) / Made available in DSpace on 2011-06-20T19:08:46Z (GMT). No. of bitstreams: 1 2006_PedroIvoOdon.pdf: 579870 bytes, checksum: 55dc44395e09babf40119ff24f982e68 (MD5) / Como uma geometria imersa, a geometria das branas é necessariamente mais rica que a geometria riemanniana satisfazendo a equação de Einstein. De fato, em lugar de contarmos apenas com a métrica, uma geometria imersa inclui também os elementos da geometria extrínseca, como a curvatura extrínseca, ou respectivamente a segunda forma fundamental, e a terceira fundamental, que aparece sempre quando a subvariedade não é uma superfície. As equações de movimentos de uma brana contém estes novos elementos geométricos e conseqüentemente necessitam de uma interpretação física. Enquanto que a segunda forma fundamental tem sido incorporada à física em diversas ocasiões, inclusive na cosmolgia de branas em cinco dimensões, a terceira forma fundamental não aparece quando a subvariedade é apenas uma hiper-superfície (ou seja, com apenas uma dimensão extra). Como a maioria dos modelos estruturada até o presente se concentra em cinco dimensões, o significado físico desta forma fundamental não é geralmente discutido nesses modelos. O objetivo principal desta tese é mostrar que a terceira forma fundamental tem as características de um campo de calibre com respeito a transformações do grupo de rotações do espaço complementar. A possibilidade de que as simetrias entre as dimensões extras em um espaço de imersão possam ser geradoras das simetrias internas foi proposta por Ne’eman em um seminário de 1965, o que não fazia muito sentido já que a relatividade geral é uma teoria riemanniana. Entretanto com o advento da teoria das cordas e da teoria M como uma teoria de variedades imersas, as branas surgiram como sendo objetos dinâmicos e imersos. Nesse caso, no contexto de branas-mundo, a terceira forma fundamental aparece como um campo de calibre fornecendo embasamento teórico para a conjectura de Ne’eman. _________________________________________________________________________________ ABSTRACT / Like an immersed geometry, the brane geometry is necessarily richer than Riemannian geometry, satisfying the Einstein’s equation. In fact, instead of using only the metric, an immersed geometry also includes the elements of an extrinsic geometry, with an extrinsic curvature, or respectively second fundamental form, and the third fundamental form. The later always appearing when the subvariety is not just a surface. The kinematics equations of a brane contain these new geometric elements that brings the necessity of a new physical interpretation. While the second fundamental form has been incorporated to physics in many occasions, including the cosmology of branes in five dimensions, the third fundamental form doesn’t appear when there is only one extra dimension. Most models nowadays focus in five dimensions, the physical meaning of this fundamental form is not discussed in these models. The objective of this thesis is to show that the third fundamental form of the brane-world has the characteristics of a gauge field with respect to the transformations of the rotational group of the complementary space. The possibility that the symmetries between the extra dimensions in an immersed space can generate internal symmetries was originally proposed by Ne’eman in a seminar of 1965. At that time the idea didn’t make much sense, since general relativity is a Riemannian geometry. However with the uprising of string and M theories as theories of immersed varieties, branes became an immersed dynamical object. In this case, the third fundamental form appears as a gauge field in brane theory, an agreement with Ne’eman’s conjecture.
2

Esferas minimas em variedades reimannianas

Martins, Jose Kenedy 16 July 1991 (has links)
Orientador: Caio Jose Colletti Negreiros / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Científica / Made available in DSpace on 2018-07-14T00:44:52Z (GMT). No. of bitstreams: 1 Martins_JoseKenedy_M.pdf: 1956277 bytes, checksum: d8586b7c2a6040dac89b8f81caeff60d (MD5) Previous issue date: 1991 / Resumo: Não informado. / Abstract: Not informed. / Mestrado / Mestre em Matemática
3

As geometrias dos espaços de Bianchi

Castro, William Alexandre Labecca de [UNESP] January 2004 (has links) (PDF)
Made available in DSpace on 2016-01-13T13:27:09Z (GMT). No. of bitstreams: 0 Previous issue date: 2004. Added 1 bitstream(s) on 2016-01-13T13:31:27Z : No. of bitstreams: 1 000854708.pdf: 1861129 bytes, checksum: 0a3a2ba1bc9f32d4d504e2869a20552e (MD5)
4

Variedades completas e não compactas de curvatura não negativa

Angélica Brandão Rossow 28 March 2003 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Um dos temas mais interessantes em Geometria Riemanniana é obter resultados topológicos a partir de hipóteses geométricas locais, por exemplo, hipóteses sobre a curvatura. Nesta dissertação, no capítulo 1, estudaremos conjuntos convexos, que formam uma ferramenta bastante útil na prova do Teorema de Cheeger-Gromoll. No segundo capítulo mostraremos uma versão generalizada do Teorema de Machigashira, que estende o Teorema de Toponogov para a curvatura radial. No terceiro capítulo provamos o Teorema da Alma e no quarto capítulo apresentamos o Teorema de Perelman.
5

Alguns aspectos da geometria riemanniana das variedades de Hilbert

Biliotti, Leonardo 03 December 2002 (has links)
Orientadores: Francesco Mercuri, Daniel Victor Tausk / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-07-31T18:06:22Z (GMT). No. of bitstreams: 1 Biliotti_Leonardo_D.pdf: 2822176 bytes, checksum: d417182310b20bf884afe3e52d326d78 (MD5) Previous issue date: 2002 / Resumo: O objetivo deste trabalho é formalizar a teoria local das variedades infinito dimensionais e estudar a geometria/ topologia no caso em que a curvatura seccional seja limitada por duas constantes positivas, comparando-se com o caso finito dimensional e enfatizando as diferenças. A teoria local já era conhecida desde 1960, e por isso nós apresentamos, sem muitos detalhes, alguns resultados tais como a existência e unicidade da conexão de Levi Civita, lema de Gauss e a existência de vizinhanças convexas.Porém, nós provamos que o critério de tensorialidade não é verificado em dimensão infinita e introduzimos uma classe, que nós chamamos de C8-fracamente contínua, cujo critério é verificado. Quando queremos estudar as propriedades globais, o fato da variedade ser completa é fundamental, como no caso finito dimensional, mas como o teorema de Hopf-Rinow nem sempre é verificado não temos a equivalência com o fato da variedade ser geodesicamente completa. As variedades completas com curvatura seccional constate simplesmente conexas não apresentam as patologias anteriores e obtemos a mesma classificação finito dimensional. Porém, a classe das variedades completas com curvatura constante positiva é maior do que a respectiva classe de dimensão finita. Esse fato é conseqüência do estudo dos grupos que podem atuar efetivamente e de modo propriamente descontínuo, como grupo de isometrias, na esfera unitária dos espaços de Hilbert de dimensão infinita. Os dois fatos básicos que justificam nossa afirmação são que cada grupo de isometrias, finito, que atua de modo propriamente descontínuo na esfera euclidiana unitária, atua também na esfera unitária de qualquer espaço de Hilbert de dimensão infinita, com as mesmas propriedades, e que cada grupo G sem torção atua efetivamente e de modo propriamente descontínuo como grupo de isometrias na esfera unitária de l2 (G). O estudo das variedades completas com curvatura seccional limitada por duas constantes positivas nos levou a estender os teoremas de comparação de Rauch e o teorema de Topogonov, no caso de variedades que verificam o teorema de Hopf-Rinow. Como corolário obtemos vários resultados da geometria Riemanniana finito dimensional tais como o teorema de Berger-Topogonov sobre o diâmetro máximo e, sobre a hipótese de que o raio de injetividade é maior do que p, resultados na mesma linha do teorema da esfera clássico / Abstract: The aim of this work is to formalize the local theory of infinite dimensional Riemannian manifold and to study the geometry/ topology when the sectional curvature is bounded by two positive constant. We compare this situation with the finite dimensional case and emphasize the difference. The local theory was already developed since 1960, so we describe, briefly, the basic facts of the theory as the existence and uniqueness of Levi Civita connection, Gauss lemma and existence of convex neighborhood. However, we proved that the fundamental theorem of tensor field is not verified and we introduced a class, that we called C8-weakly, for which the criterion holds. When we want to study the global properties, the fact that the manifold is complete is fundamental, as in finite dimensional case, but as the Hopf-Rinow theorem is not always verified, completeness is not always equivalent to geodesic completeness. These pathology is not verified by complete simply connected manifolds with constant sectional curvature and we have the same classification as the finite dimensional case. However, the class of infinite dimensional manifolds of constant positive curvatura is bigger than the respective class in the finite dimensional case. This fact is consequence of the study of the groups that could acts effective and properly discontinuosly, as isometry group, on the unitary sphere on infinite dimensional Hilbert spaces. The two basics facts that justify our are that any infinite dimensional Hilbert space and any group G without torsion, acts without fixed point and properly discontinuous, as isometry group, on the sphere in l2 (G). The extension of theorems of Rauch and Topogonov, is fundamental when we study the geometry of with sectional curvature bounded by two positive constants. The consequence are the extension of some classical result, that we have proved in chapter 6, like of Berger- Topogonov theorem about the maximal diameter and, when we assume that the radius of injectivity of the manifolds is at least p, some results in the spirit of the pinching theorems / Doutorado / Doutor em Matematica Pura
6

Subvariedades homogeneas em codimensão dois

Castro, Helvecio Pereira de 04 July 1996 (has links)
Orientadores: Maria Helena Noronha, Francesco Mercuri / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Científica / Made available in DSpace on 2018-11-01T18:33:53Z (GMT). No. of bitstreams: 1 Castro_HelvecioPereirade_D.pdf: 1190315 bytes, checksum: 82289650ca45dd682e9f70a1b63f1006 (MD5) Previous issue date: 1996 / Resumo: Neste Trabalho são estudadas imersões isométricas de variedades Riernannianas homogêneas no espaço Euclideano em codimensão dois. É considerado o problema de rigidez para estas imersões, e rnostrado que toda subvariedade rígida é isoparamétrica. Para irnersões não rígidas é obtido também um teorema de classificação para variedades de dimensão maior que 4. No caso em que a variedade homogênea é tarnbém uma variedade de Einstein obtemos uma classificação completa, sern a restrição na dimensão da variedade. Em seguida os resultados obtidos são aplicados ao estudo das variedades de cohomogeneidade 1. É mostrado que urna hipersuperfície cornpacta do espaço Euclideano que adrnite uma ação de um subgrupo do grupo das isometrias com órbitas principais de codimensão 1 e curvatura seccional positiva, é uma hipersuperfície de revolução. / Abstract: Not informed / Doutorado / Doutor em Matemática
7

A geometria das métricas tipo-Einstein / The geometric of like-Einstein metrics

Ribeiro Júnior, Ernani de Sousa January 2011 (has links)
RIBEIRO JÚNIOR, Ernani de Sousa. A geometria das métricas tipo-Einstein. 2011. 90 f. Tese(Doutorado em Matemática)- Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2011. / Submitted by Rocilda Sales (rocilda@ufc.br) on 2011-11-17T13:11:16Z No. of bitstreams: 1 2011_tese_esrjunior.pdf: 510744 bytes, checksum: f564d14c6fbb20ff5ad39706e7e9f462 (MD5) / Approved for entry into archive by Rocilda Sales(rocilda@ufc.br) on 2011-11-17T16:37:27Z (GMT) No. of bitstreams: 1 2011_tese_esrjunior.pdf: 510744 bytes, checksum: f564d14c6fbb20ff5ad39706e7e9f462 (MD5) / Made available in DSpace on 2011-11-17T16:37:27Z (GMT). No. of bitstreams: 1 2011_tese_esrjunior.pdf: 510744 bytes, checksum: f564d14c6fbb20ff5ad39706e7e9f462 (MD5) Previous issue date: 2011 / The purpose of this work is study the geometric of the like-Einstein metrics (Ricci soliton, almost Ricci solitons and quasi-Einstein metrics). More specifically, we obtain structure equations, examples, integral formulae and estimates that will enable characterize these classes of metrics / O objetivo deste trabalho é estudar a geometria das métricas tipo-Einstein (solitons de Ricci, quase solitons de Ricci e métricas quasi-Einstein). Mais especificamente, vamos obter equações de estrutura, exemplos, fórmulas integrais e estimativas que permitirão caracterizar estas classes de métricas.
8

Sobre H-hipersuperfícies compactas de N X R / H-hypersurfaces of N x R

Silva, Heloisa Frazão da January 2011 (has links)
SILVA, Heloisa Frazão da. Sobre H-hipersuperfícies compactas de N X R. 2011. 29 f. Dissertação (Mestrado em Matemática)- Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2011. / Submitted by Rocilda Sales (rocilda@ufc.br) on 2011-11-18T13:33:11Z No. of bitstreams: 1 2011_dis_hfsilva.pdf: 238505 bytes, checksum: 667b55024bcd5878947aeb74fa27df71 (MD5) / Approved for entry into archive by Rocilda Sales(rocilda@ufc.br) on 2011-11-18T13:33:39Z (GMT) No. of bitstreams: 1 2011_dis_hfsilva.pdf: 238505 bytes, checksum: 667b55024bcd5878947aeb74fa27df71 (MD5) / Made available in DSpace on 2011-11-18T13:33:39Z (GMT). No. of bitstreams: 1 2011_dis_hfsilva.pdf: 238505 bytes, checksum: 667b55024bcd5878947aeb74fa27df71 (MD5) Previous issue date: 2011 / Consider F(N x R) the set of closed hypersurfaces M such that M C N x R) where N is a simply connected riemannian manifold with sectional curvature bounded above (KN ≤ -k2 < 0). Thereafter, with the aid of Hessian Comparison Theorem we show some inequalities for these submanifolds M С N x R with constant mean curvature HM. / Consideraremos F(N x R) o conjunto das H-hipersuperfícies fechadas M tal que M С N x R, onde N é uma variedade riemanniana simplesmente conexa com curvatura seccional limitada superiormente (KN ≤ -k2 < 0). A partir daí, com o auxílio do Teorema de Comparação do Hessiano mostraremos algumas desigualdades para estas subvariedades M С N x R com curvatura média constante HM.
9

A Curvatura de Gauss-Kronecker de hipersuperfícies mínimas em formas espaciais 4-dimensionais / The Gauss-Kronecker curvature of minimal hypersurfaces in four dimensional space forms

Targino, Renato Oliveira January 2011 (has links)
TARGINO, Renato Oliveira. A Curvatura de Gauss-Kronecker de hipersuperfícies mínimas em formas espaciais 4-dimensionais. 2011. 54 f. Dissertação (Mestrado em Matemática)- Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2011. / Submitted by Rocilda Sales (rocilda@ufc.br) on 2011-11-21T11:50:56Z No. of bitstreams: 1 2011_dis_rotargino.pdf: 469086 bytes, checksum: 746d55e7d79fb45d7fcd7feb218ae991 (MD5) / Approved for entry into archive by Rocilda Sales(rocilda@ufc.br) on 2011-11-21T11:54:05Z (GMT) No. of bitstreams: 1 2011_dis_rotargino.pdf: 469086 bytes, checksum: 746d55e7d79fb45d7fcd7feb218ae991 (MD5) / Made available in DSpace on 2011-11-21T11:54:05Z (GMT). No. of bitstreams: 1 2011_dis_rotargino.pdf: 469086 bytes, checksum: 746d55e7d79fb45d7fcd7feb218ae991 (MD5) Previous issue date: 2011 / In this work we study complete minimal hypersurfaces with constant Gauss-Kronecker curvature in a space form Q4(c). We prove that the infimum of the absolute value of the Gauss-Kronecker curvature of a complete minimal hypersurface in Q4(c); c ≤ 0; whose Ricci curvature is bounded from below,is equal to zero. Futher, we study the connected minimal hypersurfaces M3 of a space form Q4(c) with constant Gauss-Kronecker curvature K. For the case c ≤ 0, we prove, by a local argument, that if K is constant, then K must be equal to zero. We also present a classification of complete minimal hypersurface of Q4 with K constant. Examples of complete minimal hypersurfaces which are not totally geodesic in the Euclidean space R4 and the hiperbolic space H4(c) with vanishing Gauss-Kronecker curvature are also presented. / Neste trabalho estudamos hipersuperfícies mínimas completas e com curvatura de Gauss-Kronecker constante em uma forma espacial Q4(c). Provamos que o ínfimo do valor absoluto da curvatura de Gauss-Kronecker de uma hipersuperfície mínima completa em Q4(c); c ≤ 0; na qual a curvatura de Ricci é limitado inferiormente, é igual a zero. Além disso, estudamos hipersuperfícies mínimas conexas M3 em uma forma espacial Q4(c) com curvatura de Gauss-Kronecker K constante. Para o caso c ≤ 0, provamos, por um argumento local, que se K é constante, então K deve ser igual a zero. Também apresentamos uma classificação de hipersuperfícies completas mínimas em Q4 com K constante. Exemplos de hipersuperfícies mínimas que não são totalmente geodésicas no espaço Euclidiano e no espaço hiperbólico com curvatura de Gauss-Kronecker nula são apresentados.
10

Algumas aplicações da geometria de Finsler na gravidade bimétrica

Carmo, Antônio Santos do 22 February 2017 (has links)
Dissertação (mestrado)—Universidade de Brasília, Instituto de Física, Programa de Pós-Graduação em Física, 2017. / Submitted by Raquel Almeida (raquel.df13@gmail.com) on 2017-05-18T21:09:16Z No. of bitstreams: 1 2017_AntônioSantosdoCarmo.pdf: 738956 bytes, checksum: ad9008e1e86cc9b2bc7bf9d2e28186c8 (MD5) / Approved for entry into archive by Raquel Viana (raquelviana@bce.unb.br) on 2017-05-19T21:27:15Z (GMT) No. of bitstreams: 1 2017_AntônioSantosdoCarmo.pdf: 738956 bytes, checksum: ad9008e1e86cc9b2bc7bf9d2e28186c8 (MD5) / Made available in DSpace on 2017-05-19T21:27:15Z (GMT). No. of bitstreams: 1 2017_AntônioSantosdoCarmo.pdf: 738956 bytes, checksum: ad9008e1e86cc9b2bc7bf9d2e28186c8 (MD5) Previous issue date: 2017-05-19 / A incompatibilidade da Teoria da Relatividade Geral de Einstein (TRG) com a Mecânica Quântica fez surgir a necessidade de se discutir a possibilidade da formulação de uma teoria de gravitação que seja compatível com esta. Uma teoria que seja mais ampla do que a TRG, e que possa ser aplicada a nível atômico e subatômico. Essa possível teoria de gravitação é muitas vezes chamada Gravitação Quântica. Nesse contexto, muitos pesquisadores têm se empenhado na busca por uma formulação consistente, física e matematicamente, dessa nova teoria e alguns modelos têm sido propostos. No entanto, esse não é um trabalho simples, pois, embora já se tenha avançado bastante, muita coisa ainda permanece obscura. Na ausência de teoria completa de gravidade quântica, qualquer generalização consistente de Relatividade Geral pode ser útil, porque poderia sugerir como essa nova teoria pode ser. Nossa proposta consiste em um modelo de gravitação bimétrica fundamentado em geometria Finsler. As vantagens de uma formulação fundamentada nessa geometria consistem no fato de que a Geometria Finsler é uma geometria Riemanniana sem a limitação quadrática, e assim, a recuperação de dados obtidos a partir da aplicação da TRG se torna teoricamente mais simples. Neste trabalho foi utilizado, na construção da métrica, uma função formada a partir da soma de duas métricas riemannianas, F(x, y) = α(x, y) + β(x, y), onde, α(x,y) = p αij(x)y iy j e β(x,y) = p βij(x)y iy j . A escolha dessa métrica se deu pela própria proposta do trabalho, uma vez que sua estrutura, dentre outras características, facilita a adição de um termo de massa, utilizando-se, para isto, o termo β(x,y). O trabalho está organizado da seguinte forma, no primeiro capítulo são abordados algumas relações entre as geometrias de Riemann e Finsler e destas com a TRG. No segundo capítulo, apresenta-se uma breve revisão dos conceitos matemáticos da geometria Finsler, tais como a métrica, conexões, geodésicas, integração em uma variedade Finsler. No capítulo três, temse um estudo sobre modelos de gravitação fundamentados em geometria Finsler, onde são apresentados alguns trabalhos de diversos autores, desenvolvidos em gravitação bimétrica. No quinto, apresentamos nossos cálculos para a obtenção de uma métrica Finsler gij. Concluímos no capítulo seis, onde também são apresentadas nossas perspectivas de trabalhos futuros. / The incompatibility of Einstein’s General Theory of Relativity (GR) with Quantum Mechanics (QM) has raised the need to discuss the possibility of formulating a theory of gravitation that is compatible with the QM, a theory that generalizes GR, and that can be applied at the atomic and subatomic level. This possible theory of gravitation is often called Quantum Gravity (QG). In this context, many researchers have been engaged in the search for a consistent formulation, physically and mathematically, of this new theory and some models have been proposed. However, this is not a simple job, because, although considerable progress has already been made, a lot still remains unclear. In the absence of a complete theory of quantum gravity, any consistent generalization of General Relativity could be useful, because it might suggest how the theory of QG should look like. Our proposal consists of a bi-metric gravity model based on Finsler geometry. The advantages of a formulation based on this geometry consist in the fact that the Finsler Geometry is essentially Riemannian geometry without the quadratic limitation, and so, the retrieval of data obtained from the application of this modification GR becomes theoretically more simple. In this work was used, in the metric construction, a function formed from the sum of two Riemannian metrics, F(x, y) = α(x, y) + β(x, y), where, α(x,y) = p αij(x)y iy j and β(x,y) = p βij(x)y iy j . The choice of this metric was based on the work proposal itself, since its structure, among other characteristics, facilitates the addition of a mass term, using, for this, the term β(x,y). The work is organized as follows, in the first chapter we discuss some relations between the geometries of Riemann and Finsler and of these with the GR. In the second chapter, we present a brief review of the mathematical concepts of Finsler geometry, such as the metric, connections, geodesics, integration on a Finsler manifold. In chapter three, we study gravity models based on Finsler geometry, where some works in bi-metric gravity are presented. In the fifth, we present our calculations to obtain a Finsler metric gij. We conclude in chapter six, where our perspectives for future work are also presented.

Page generated in 1.6653 seconds