71 |
Effect of dietary vitamin E and lipids on some immune parameters of turbot (Scophthalmus maximus L.)Crampe, Mireille January 1998 (has links)
The effect of dietary vitamin E and dietary lipids on growth and immune parameters of juvenile turbot (Scophthalmus maximus) were investigated in a series of experiments. The aims of the studies were to maximise immune function through dietary modulation to counteract stress induced immunodepression resulting from high stocking densities. In the first experimental trial, the vitamin E requirement for an optimum immune response was studied and revealed that vitamin E depletion induced poor health status, lower growth with some mortalities occurring at the end of the trial. However, supplementation of the diets with high levels of α-tocopherol although ensuring better growth did not significantly enhance most of the parameters measured at the end of the trial. The second trial aimed to test regimes coupling fresh or oxidised oil and low or high vitamin E supplementation. The results showed that vitamin E had a role in preventing peroxidation as high vitamin E supplementation improved some of the immunological parameters measured compared to fish fed with the same oxidised oil but low levels of vitamin E. By contrast low levels of vitamin E did not induce pathological conditions in fish fed with fresh oil showing the importance of dietary lipid in the evaluation of vitamin E requirements. Following this investigation another feeding trial was designed to look at the interaction of polyunsaturated fatty acids (PUFAs) and α-tocopherol on the immune parameters of juvenile turbot. Although liver lipid composition was affected by the diets and growth was enhanced by high vitamin E levels and a high ratio of (n-3)/(n-6) PUFAs no significant differences could be attributed to the lipid quality in the immunological parameters measured. Vitamin E supplementation enhanced the proliferation of kidney leucocytes when stimulated with lipopolysaccharide. These studies give some information on the requirements for vitamin E and lipid quality of juvenile turbot.
|
72 |
Fishways and freshwater fish migration on South-Eastern Australia.Mallen-Cooper, Martin January 1996 (has links)
University of Technology, Sydney. Faculty of Science. / In the last 100 years there have been dramatic declines in the range and abundance of native freshwater fish in south-eastern Australia. These declines have been attributed to habitat loss and degradation (including river regulation, water quality, erosion/siltation, instream cover and riparian vegetation), alien fish species, overfishing, and the obstruction of fish passage. In south-eastern Australia there are 86 species of freshwater fish and 36 of these have some migratory component of their life history that requires free passage along streams. The migrations of these fish in this region have been inhibited or prevented by the existence of more than 1500 dams and weirs. To mitigate this impact there are only 69 fishways. Most of these fishways are based on designs suitable for the swimming ability and behaviour of salmonids from the Northern Hemisphere. There are, however, no native salmonids in Australia. I assessed one of these salmonid fishways, at Euston on the Murray River, for its suitability for passing native fish. Fish were trapped at the top and bottom of the fishway over eight paired days. Although this fishway has one of the lowest slopes of the older fishways, and therefore potentially one of the easiest to ascend, very few of the fish that entered the fishway could get to the top. For example, 777 +/- 238 [x +/- s.e.] golden perch (Macquaria ambigua) per day entered the fishway but only 4 +/- 2 per day were collected at the top of the fishway. This and other data highlighted two points: i) the ineffectiveness of the salmonid-type fishways for native fish; and ii) assessing fishways by counting fish at the top only, although widely used throughout the world, is insufficient to assess the performance of a fishway. Counts of fish from the top of a fishway can, however, be useful to monitor fish populations over time. An excellent example of this is provided by long-term monitoring of the Euston fishway, which shows massive declines in the upstream movements of silver perch (Bidyanus bidyanus), Murray cod (Maccullochella peelii peelii) and Macquarie perch (Macquaria australasica) between 1940-45 and 1987-90, indicating corresponding declines in the populations of these species. The failure of salmonid fishways for non-salmonid fishes has been a common experience throughout the world. It stems partly from a lack of knowledge of the migratory patterns of non-salmonid fish, and from a lack of quantitative experimental research into the swimming ability and behaviour of these fish in fishways. To redress this situation for south-eastern Australia, I tested fish in experimental fishways in a hydraulics laboratory. The fishway design tested was the vertical-slot fishway, which is a pool-type fishway where water flows between each pool via a vertical slot. The design was considered to potentially suit the hydrology of Australian rivers and the behaviour of native fish. For these experiments I selected fish species and life stages representative of the migratory fish fauna of the two major drainages of south-eastern Australia. For the south-eastern coastal rivers I chose juvenile Australian bass (Macquaria novemaculeata)[mean lengths of 40, 64 and 93 mm] and barramundi (Lates calcarifer) [43 mm]. These two species are catadromous, with the adults migrating downstream to the estuary to breed and the juveniles migrating upstream. For the large inland Murray-Darling river system I chose adult golden perch (Macquaria ambigua) [441 mm] and silver perch(Bidyanus bidyanus) [258 mm]. At the beginning of this study, adults of these two species were considered to be the main life stage migrating upstream. In the laboratory experiments fish were tested at different water velocities and probit analysis was applied to the proportion of fish that negotiated these velocities. I used this approach to produce values which I called the NV90 and the NV95, which are the maximum water velocities that 90% and 95% of the fish could negotiate in the fishway. For bass, barramundi and golden perch these values ranged from 0.7 to 1.8 m s-1. These values are well below the standard maximum water velocity for salmonid fishways of 2.4 m s-l. The silver perch results were too variable to analyse. The data obtained from the laboratory experiments were used by water resource agencies to build eight new vertical-slot fishways in coastal and inland rivers of southeastern Australia. One of the largest of these new fishways was at Torrumbarry Weir on the Murray River, which consists of 38 pools, each 3 m long, ascending a 6.5 m high weir. The fishway, if successful, would provide access to 350 km of habitat above the weir. To determine whether or not the fishway was successful in passing native migratory fish it was assessed for 2.5 years by: i) sampling monthly above and below the fishway with a standard set of independent, replicated nets; and ii) sampling within the fishway. The netting showed that there were major aggregations of migratory fish below the weir when the fishway was not operational. However, when the fishway was completed and operational, 13 months after the commencement of sampling, there were no further major aggregations of migratory fish below the weir. These data, combined with high numbers of fish successfully ascending the fishway, indicated the success of this vertical-slot fishway design. It was estimated that from February 1991 to June 1993 20,7 14 native fish and 16,595 alien fish (all carp [Cyprinus carpio]) had successfully ascended the fishway. Sampling at the top and bottom of the fishway showed that the fishway passed almost all the species and sizes classes of native migratory fish, except for Australian smelt (Retropinna semoni). The latter is a small species 15 to 40 mm long that only entered the lower few pools of the fishway. The widespread distribution of this species indicates the migration is facultative. Experiments within the fishway showed that the laboratory experiments had underestimated swimming ability. However, it was discovered that fish still needed over 1.5 hours to ascend the full length of the fishway. In addition, some species only migrated upstream during daylight and if their ascent of the fishway was not completed in daylight the fish moved back down the fishway. I concluded that the original water velocity criterion from the laboratory experiments was appropriate and that future fishways need to consider ascent time and fishway length as well as water velocity. I also concluded that it is more difficult to obtain realistic results from 'off-site' experiments, where fish are transported to a laboratory or other facility, than from in situ experiments where naturally migrating fish are used and are not handled until the end of the experiment. Sampling at Torrumbarry Weir provided detailed information on the biology of the migratory fish species, which is essential to designing effective fishways. Carp(Cyprinus carpio), an introduced or alien species, and bony herring were newly identified as migratory, and golden perch and silver perch were confirmed as migratory. A major finding was that 95% of golden perch and 87% of silver perch moving upstream were immature fish. Previously the upstream movement of immature fish in this river system was considered insignificant. Fortunately the conservative water velocities in the Torrumbarry fishway accommodated these smaller fish(approximately 100 to 300 mm in length). The reason for the large numbers of immature fish migrating upstream is not clear, but it may be to optimise feeding, enhance colonisation, or to compensate for the downstream drift of the pelagic eggs and larvae. Migration of all species was seasonal. Spring, summer and early autumn were the main periods of upstream movement for native fish, and carp moved upstream in spring and early summer. Migration of carp was stimulated by rising water temperature only, but golden perch and silver perch were stimulated to move upstream by small changes in river levels. This small scale variation in streamflow is frequently suppressed by river regulation, and this is likely to have contributed to the significant decrease in the numbers of migrating native fish. Upstream migration of all species often occurred during low flows, as well as higher flows. This also occurs in coastal rivers of southeastern Australia. For both the coastal and inland rivers of this region it will be important to design fishways and environmental flow releases to accommodate this aspect of fish migration and the often semi-arid hydrology of these streams. Golden perch and silver perch were aged using sagittal otoliths and validated using known-age fish. The data showed that the immature fish were all over one year old, suggesting that younger fish are not migrating upstream. More research is needed to determine the location and habitats of the less than one year old fish. Ageing and examination of gonads indicated the size and age at maturity for these fish. This suggested that minimum size limits currently used to regulate the recreational fishery are not allowing fish to reach maturity. Golden perch and silver perch were found to be long-lived fish, up to 26 and 27 years respectively. Interestingly, samples of these two species from other rivers within the Murray-Darling river system show that the maximum sizes of these fish can vary significantly between rivers, suggesting that the ecology of different rivers within this large river system varies considerably. The development of fishways for non-salmonid fishes throughout the world has frequently met with failure. From the work in the present study and from reviewing other work I suggest there are five steps for the development of effective fishways. 1. Determine which fish species are migratory: - it is important to identify the smallest and largest fish that are migratory, as this affects the initial choice of the size of the fishway to test. 2. Test fish in an experimental fishway: - in situ experiments are recommended; - avoid handling of fish before and during experiments. 3 Design the fishway: - first decide on the location of the fishway entrance; - extrapolate research results with caution; - do not reduce pool sizes from the experimental model; - avoid tunnels; - design the fishway to operate over the full range of flows during which fish migrate. 4. Link the fishway with the operation of the dam or weir: - maintain flow and temperature regimes that stimulate migration; - manage flow releases over the spillway to guide fish to the fishway entrance. 5. Assess the fishway: - use quantitative and relevant performance criteria to assess the fishway and not only counts of fish from the top of the fishway. The most common strategy in the past has been to design the fishway and ignore steps 1, 2, 4 and 5. With fishways being increasingly recognised as important tools in the rehabilitation of aquatic biota in temperate river systems, and as a potential tool in the development of water resources in tropical rivers, it is essential that they are appropriately designed, constructed, and assessed. Otherwise the mistakes of the past will very likely be repeated.
|
73 |
An evaluation of walleye (Sander vitreus) spawning potential in a north temperate Wisconsin lake /Williamson, Lauren E. January 2008 (has links) (PDF)
Thesis (M.S.)--University of Wisconsin--Stevens Point, 2008. / Submitted in partial fulfillment of the requirements for the degree of Master of Science in Natural Resources (Fisheries), College of Natural Resources. Includes bibliographical references (leaves 82-89).
|
74 |
Yellowtail flounder, Limanda ferruginea, stock status 1988 : a revision of southern New England and Georges Bank assessments /McBride, Margaret Mary. January 1989 (has links)
Thesis (M.S.)--Oregon State University, 1990. / Typescript (photocopy). Includes bibliographical references (leaves 106-110). Also available on the World Wide Web.
|
75 |
Disruption of embryonic development in common carp, Cyprinus carpio, and channel catfish, Istalurus punctatus, via knock down of BMP2 gene for repressible transgenic sterilizationChaimongkol, Atra, Dunham, Rex A., January 2009 (has links)
Thesis (Ph. D.)--Auburn University. / Abstract. Vita. Includes bibliographical references (p. 66-71).
|
76 |
The effects of hatchery and wild ancestry and environmental factors on the behavioral development of steelhead trout fry (Oncorhynchus mykiss) /Berejikian, Barry A., January 1995 (has links)
Thesis (Ph.D.)--University of Washington, 1995. / Vita. Includes bibliographical references (leaves 100-111).
|
77 |
Description and prediction of broad-scale spatial variability in expression of anadromy in female Oncorhynchus mykiss in the John Day River, Oregon, USA /Mills, Justin S. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2009. / Printout. Includes bibliographical references (leaves - ). Also available on the World Wide Web.
|
78 |
Ecological effects of chemicals used in pond culture of catfish and percid fishesJacob, Annie Philip, January 2008 (has links)
Thesis (Ph. D.)--Ohio State University, 2008. / Title from first page of PDF file. Includes bibliographical references (p. 200-221).
|
79 |
Evaluating methods of estimating walleye angling exploitation in northern Wisconsin lakes /Deroba, Jonathan J. January 2004 (has links) (PDF)
Thesis (M.S.) Natural Resources (Fisheries), University of Wisconsin--Stevens Point, 2004. / Includes bibliographical references (leaves 108-116).
|
80 |
Population dynamics of a recovering lake trout population in Wisconsin waters of Lake Superior, 1980-2001 /Linton, Brian C. January 2002 (has links) (PDF)
Thesis (M.S.)--University of Wisconsin--Stevens Point, 2002. / Includes bibliographical references (leaves 41-52).
|
Page generated in 0.0558 seconds