11 |
Modélisation de la structure et de la dynamique des flammes pour la simulation aux grandes échelles / Modeling chemical flame structure and combustion dynamics in large eddy simulationAuzillon, Pierre 20 October 2011 (has links)
Dans le contexte actuel, pour diminuer la consommation de fuel et les émissions de polluants comme le CO2 ou les NOx, les chambres de combustion aéronautiques de nouvelle génération sont basées sur la combustion partiellement prémélangée pauvre. La simulation numérique de ce type de chambre nécessite de prédire avec précision la température, la dynamique de flamme et la formation de polluants. Comme l’écoulement est fortement instationnaire, l’utilisation de la simulation aux grandes échelles s’avère nécessaire. C’est dans ce contexte que nous avons développé le modèle F-TACLES (Filtered Tabulated Chemistry for Large Eddy Simulation). Ce modèle se base sur un filtrage a priori de flammelettes calculées en prenant en compte les effets liés à la chimie détaillée. Il permet alors d’améliorer la prédiction des polluants et de la température tout en prenant en compte les contributions résolues et de sous maille de plissement, garantissant ainsi la bonne prédiction de la vitesse de propagation de la flamme. F-TACLES est appliqué à deux configurations d’injecteurs industriels étudiés expérimentalement : les chambres PRECCINSTA et MOLECULES. Sur le plan de la prédiction de la dynamique de flamme, le développement de F-TACLES a induit une réflexion plus générale sur la combustion en LES. En effet, l’ensemble des méthodes de simulation de la combustion introduisent un épaississement artificiel de la flamme afin de pouvoir la résoudre sur le maillage de calcul. L’impact de cet épaississement est étudié pour les approches TFLES (Thicken Flame for Large Eddy Simulation) et F-TACLES dans le cadre simplifié de la combustion prémélangée. Pour cela, une approche analytique ainsi que des simulations laminaires et turbulentes sont réalisées et comparées à des simulations directes (Direct Numerical Simulation) et à des données expérimentales. Pour finir, la chambre de combustion d’un hélicoptère est simulée avec l’approche F-TACLES pour reproduire et comprendre l’effet d’une modification géométrique observée expérimentalement. / In the present-day context, to reduce fuel consumption and emissions of pollutants such as CO2 or NOx, aeronautical combustion chambers of new generation are based on lean partially-premixed combustion. The numerical simulation of these configurations then requires to accurately predict the temperature, the flame dynamics and the pollutant formation. To capture flow instationnarities, Large Eddy Simulation (LES) is required. In this context, we have developed the model F-TACLES (Filtered tabulated Chemistry for Large Eddy Simulation). This modeled is based on an a priori filtering of flamelet that takes into account detailed chemistry effects. It lets to improve predictions of pollutants and temperature with the resolved and modelled contributions of the flame wrinkling, while guaranteeing a correct prediction of the flame propagation speed. F-TACLES is applied to two experimentallystudied industrial injectors : the PRECCINSTA and MOLECULES combustion chambers. In terms of flame dynamics prediction, the F-TACLES development induced a more general reflection on the combustion LES. Indeed, all methods of combustion simulation introduce an artificial thickening of the flame front for an appropriate resolution on the computational mesh. In the simplified framework of premixed combustion, the impact of this thickening is measured for two different approaches : TFLES (Thicken Flame for LES) and F-TACLES. For this purpose, an analytical model as well as laminar and turbulent simulations are compared to direct numerical simulation (DNS) or experimental data. Finally, a helicopter combustion chamber is simulated with the F-TACLES approach in order to attempt to reproduce the impact of a geometric modification on the combustion.
|
12 |
Experimental analysis of the dynamics of gaseous and two-phase counterflow flames submitted to upstream modulations / Analyse expérimentale de la dynamique de flammes à contre-courant soumises à des modulations de vitesse dans des écoulements gazeux et diphasiquesDuchaine, Patrick 01 July 2010 (has links)
La conception de chambres de combustion de nouvelles génération moins polluantes et fonctionnant sur des plages de stabilité plus grandes nécessite une meilleure connaissance et modélisation de la dynamique de la combustion.De nombreux systèmes sont alimentés avec des carburants liquides atomisés qui interagissent avec des grandes structures de l’écoulement d’air puis avec le front de flamme. Il existe cependant peu de données qui permettent de valider les outils de simulation dans des configurations mettant en jeu des flammes en interaction avec des structures contrôlées pour des écoulements polyphasiques.Certaines de ces interactions fondamentales sont étudiées dans ce travail pour des écoulements laminaires soumis à des modulations de vitesse. Les configurations expérimentales correspondent à des flammes à contre-courant et à des jets inertes libres, avec une injection de combustible liquide vaporisé ou sous la forme de sprays polydisperses. Ces écoulements peuvent être soumis à des modulations de vitesse de manière à reproduire les effets d’instationnarité. En fonction de la fréquence de la pulsation, des tourbillons de tailles contrôlées sont générés à la sortie des brûleurs et sont convectés par l’écoulement. Ils interagissent avec le spray de combustible ou la flamme.Une première partie de la thèse vise à caractériser la dynamique de flammes prémélangées dans des écoulements à point d’arrêt pour des combustibles gazeux. L’étude se concentre tout particulièrement sur l’interaction de structures tourbillonnaires avec une flamme plane. Différentes réponses de la flammes ont identifiées et analysées en fonction de la taille des tourbillons générés.Deux régimes de propagation des perturbations de vitesse sont mis en évidence correspondant à une oscillation en bloc de la zone de combustion ou à des perturbations limitées à la périphérie du front de flamme. Ces constatations remettent en cause le choix des conditions aux limites à imposer dans les simulations numériques unidimensionnelles de ces configurations. Des comparaisons entre des prévisions numériques et des mesures du champ de vitesse supportent nos conclusions. L’analyse de la réponse de ces flammes est ensuite poursuivie par la détermination de leurs fonctions de transfert entre le dégagement de chaleur et les perturbations vitesses imposées à la sortie du brûleur.Ces mesures basées sur l’étude du signal de chimiluminescence rayonné par la flamme mettent à nouveau en évidence une différence de comportement entre la région restreinte au centre de l’écoulement à point d’arrêt et le comportement global de l’ensemble de la zone de combustion. Ces configurations sont ensuite utilisées pour identifier les mécanismes de production de bruit par des flammes parfaitement et partiellement prémélangées.La deuxième partie des travaux est dédiée à la caractérisation de la réponse à des tourbillons d’un spray dilué convecté par un jet inerte ou d’un spray combustible alimentant une flamme plane de diffusion dans un écoulement à contre-courant lorsqu’ils interagissent avec des tourbillons. L’originalité du travail repose sur l’utilisation combinée de diagnostics optiques avancés pour caractériser la dynamique de la phase gazeuse et de la phase dispersée, ainsi que leurs interactions par une prise d’images en moyenne conditionnée à différents instants du cycle de modulation. La distribution de la vapeur de carburant injecté dans les phases gazeuses et liquides est notamment caractérisée grâce à la Fluorescence Exciplex Induite par Laser (LIEF). La distribution de vitesse et la granulométrie des gouttelettes du spray sont déterminées localement par effet Doppler (PDA) et dans un plan par Interférométrie par Imagerie de Particules (IPI). Ces diagnostics sont complétés par l’utilisation de la Vélocimétrie Laser Doppler (LDV) et la Vélocimétrie par Imagerie de Particules(PIV) pour déterminer la réponse de la phase gazeuse de ces écoulements. / Modern combustion systems benefit from constant technological advanceswhich aim at reducing the emissions of chemical pollutants and at wideningregimes of stable operation. Further progress in the combustion field requiresa better understanding and modelling of the combustion dynamics. In thesesystems, the combustible is often injected as a liquid polydisperse spray. Experimentaldata are thus required to validate simulation tools in configurationswith flames interacting with controlled structures in multi-phase flows.This thesis aims at studying some of these fundamental interactions in wellcontrolledlaminar flows submitted to upstream modulations. Two experimentalconfigurations are investigated comprising counterflow flames and free inertjets, fed with gaseous or liquid combustibles. The flows may be submittedto upstream velocity modulations to reproduce effects of unsteadiness. Dependingon the pulsation frequency, vortices of controlled sizes are shed fromthe burner lips and convected with the flow, while interacting with the sprayand the flame.In the first part of this thesis, the dynamics of a premixed stretched flameis analysed in a stagnation flow. The study focuses on determining the flowand flame structures under upstream modulations, and principally on studyingthe dynamics of flame/vortex interactions. Different responses of the flameare identified and analysed relative to the size of the vortex ring generated atthe burner outlet. Two propagation modes for the velocity perturbations areidentified, corresponding to a bulk oscillation of the entire reaction zone orto a flame perturbed only at its periphery. This leads to a discussion on thechoice of velocity boundary conditions to conduct 1D simulations of theseconfigurations. Comparisons between simulations and measurements of thevelocity field illustrate these conclusions. Flame transfer functions betweenheat release rate and velocity perturbations imposed at the burner outlet areestablished for different flow conditions. These measurements relying on localand global chemiluminescence of the flame show again a distinct behaviourof the emission originating from the flame region close to the burner axis andthe whole flame. Mechanisms of sound production by partially and perfectlypremixed flames are also identified and analysed relative to flame/vortex interactions.In the second part, the dynamics of a spray convected by a free inert jet or impinginga diffusion flame submitted to velocity modulations is analysed. Theoriginality of this work consists in characterizing the flow and spray dynamicsusing a set of advanced diagnostics. Phase-conditioned images at different instantsin the modulation cycle are used to analyse the interactions between thegaseous phase and the spray. The spatial distribution of combustible vapourand liquid phases is determined using Laser Induced Exciplex Fluorescence(LIEF). Velocities and sizes distribution of droplets from the spray are determinedlocally by Phase Doppler Anemometry (PDA) and in a plane by InterferometricParticle Imaging (IPI). Laser Doppler Velocimetry (LDV) andParticle Image Velocimetry (PIV) are also used to determine the response ofgaseous phase. These phase-conditioned analysis highlight some interactionsbetween the gaseous and liquid phases and constitute an interesting databasefor detailed simulation of these two-phase flows.
|
13 |
A Numerical Study of Concurrent-Flow Flame Spread Over Ultra-Thin Solid Samples in MicrogravityHealey, Eli J. 23 May 2022 (has links)
No description available.
|
14 |
A Computational Fluid Dynamics Investigation of Thermoacoustic Instabilities in Premixed Laminar and Turbulent Combustion SystemsChatterjee, Prateep 26 July 2004 (has links)
Lean premixed combustors have been designed to lower NOx and other pollutant levels in land based gas turbines. These combustors are often susceptible to thermo-acoustic instabilities, which manifest as pressure and heat release oscillations in the combustor. To be able to predict and control these instabilities, it is required that both the acoustics of the system, and a frequency-resolved response of the combustion process to incoming perturbations be understood.
Currently, a system-level approach is being used widely to predict the thermoacoustic instabilities. This approach requires simple, yet accurate models which would describe the behavior of each dynamic block within the loop. The present study is directed toward using computational fluid dynamics (CFD) as a tool in developing reduced order models for the dynamics of laminar flat flames and swirl stabilized turbulent flames. A finite-volume based approach is being used to simulate reacting flows in both laminar and turbulent combustors. The study has been divided into three parts -- the first part involves the modeling of a self-excited combustor (the acoustics of the combustor are coupled with the unsteady heat release); the second part of the research aims to study the effect of velocity perturbations on the unsteady heat release rate from a burner stabilized laminar flat flame; the third and final part of work involves an extension of the laminar flat flame study to turbulent reacting flows in a swirl stabilized combustor, and study the effects on the turbulent heat release due to the velocity perturbations.
A Rijke tube combustor was selected to study self-excited combustion phenomenon. A laminar premixed methane-air flat flame was stabilized on a honeycomb flame-stabilizer. The flame stabilizer was placed at the center of the 5 feet vertical tube. The position of the flame at the center of the tube leads to a thermoacoustic instability of the 2nd acoustic mode. The fundamental thermoacoustic frequency was predicted accurately by the CFD model and the amplitude was reasonably matched (for a flow rate of Q = 120 cc/s and equivalence ratio phi = 1.0). Other characteristics of the pressure power spectrum were captured to a good degree of accuracy. This included the amplitude modulation of the fundamental and the harmonics due to a subsonic pulsating instability.
The flat flame study has been being conducted for Q = 200 cc/s and equivalence ratio phi = 0.75. The objective has been to obtain a frequency response function (FRF) of the unsteady heat release rate (output) due to incoming velocity perturbations (input). A range of frequencies (15 Hz - 500 Hz) have been selected for generating the FRF. The aim of this part of the study has been to validate the computational model against the experimental results and propose a physics based interpretation of the flame response. Detailed heat transfer modeling (including radiation heat transfer) and two-step chemistry models have been implemented in the model. The FRF generated has been able to reproduce the experimentally observed phenomena, like the low frequency pulsating instability occurring at 30 Hz. A heat transfer study has been conducted to explain the pulsating instability and a fuel variability study has been performed. Both the heat transfer study and the fuel variability study proved the role of heat transfer in creating the pulsating instability.
The final part of the study involves simulation of reacting flow in a turbulent swirl stabilized combustor. The effect of velocity perturbations on the unsteady heat release has been studied by creating an FRF between the unsteady velocity and the unsteady heat release rate. A Large Eddy Simulation (LES) approach has been selected. A swirl number of S = 1.19 corresponding to a flow rate of Q = 20 SCFM with an equivalence ratio of phi = 0.75 have been implemented. Reduced reaction chemistry modeling, turbulence-chemistry interaction and heat transfer modeling have been incorporated in the model. The LES of reacting flow has shown vortex-flame interaction occurring inside the combustor. This interaction has been shown to occur at 255 Hz. The FRF obtained between unsteady velocity and unsteady heat release rate shows good comparison with the experimentally obtained FRF. / Ph. D.
|
15 |
Wall-temperature effects on flame response to acoustic oscillationsMejia, Daniel 20 May 2014 (has links) (PDF)
Combustion instabilities, induced by the resonant coupling of acoustics and combustion occur in many practical systems such as domestic boilers, gas turbine and rocket engines. They produce pressure and heat release fluctuations that in some extreme cases can provoke mechanical failure or catastrophic damage. These phenomena have been extensively studied in the past, and the basic driving and coupling mechanisms have already been identified. However, it is well known that most systems behave differently at cold start and in the permanent regime and the coupling between the temperature of the solid material and combustion instabilities still remains unclear. The aim of this thesis is to study this mechanism.
This work presents an experimental investigation of combustion instabilities for a laminar premixed flame stabilized on a slot burner with controlled wall temperature. For certain operating conditions, the system exhibits a combustion instability locked on the Helmholtz mode of the burner. It is shown that this instability can be controlled and even suppressed by changing solely the temperature of the burner rim. A linear stability analysis is used to identify the parameters playing a role in the resonant coupling and retrieves the features observed experimentally. Detailed experimental studies of the different elementary processes involved in the thermo-acoustic coupling are used to evaluate the sensitivity of these parameters to the wall temperature. Finally a theoretical model of unsteady heat transfer from the flame root to the burner-rim and detailed experimental measurements permit to establish the physical mechanism for the temperature dependance on the flame response.
|
16 |
Effets de la température de paroi sur la réponse de la flamme à des oscillations acoustiques / Wall-temperature effects on flame response to acoustic oscillationsMejia, Daniel 20 May 2014 (has links)
Les instabilités de combustion induites par le couplage combustion-acoustique se produisent dans de nombreux systèmes industriels et domestiques tels que les chaudières, les turbines à gaz et les moteurs de fusée. Ces instabilités se traduisent par des fluctuations de pression et un dégagement de chaleur qui peuvent provoquer une défaillance mécanique ou des dégâts désastreux dans certains cas extrêmes. Ces phénomènes ont été largement étudiés par le passé, et les mécanismes responsables du couplage ont déjà été identifiés. Cependant, il apparaît que la plupart des systèmes se comportent différemment lors du démarrage à froid ou en régime permanent. Le couplage entre la température des parois et les instabilités de combustion reste encore méconnu et n’a pas été étudié en détail jusqu’à présent. Dans le cadre de ces travaux de thèse, on s’intéresse à ce mécanisme. Ces travaux présentent une étude expérimentale des instabilités de combustion pour une flamme laminaire de pré-mélange stabilisée sur un brûleur à fente. Pour certaines conditions de fonctionnement, le système présente un mode instable autour du mode de Helmholtz du brûleur. Il est démontré que l’instabilité peut être contrôlée, et même supprimée, en changeant uniquement la température de la surface du brûleur. Une analyse de stabilité linéaire peut être mise en œuvre afin d’identifier les paramètres jouant un rôle dans les mécanismes d’instabilité, et il est possible de modéliser analytiquement les phénomènes observés expérimentalement. Des études expérimentales détaillées de différents processus élémentaires impliqués dans le couplage thermo-acoustique ont été menées pour évaluer la sensibilité de ces paramètres à la température de la paroi. Enfin un modèle théorique du couplage entre le transfert de chaleur instationnaire à la paroi et la fluctuation du pied de flamme a été proposé. Par ailleurs, d’autres mesures expérimentales ont permis de comprendre les mécanismes physiques responsables de la dépendance de la réponse de la flamme à la température de paroi. / Combustion instabilities, induced by the resonant coupling of acoustics and combustion occur in many practical systems such as domestic boilers, gas turbine and rocket engines. They produce pressure and heat release fluctuations that in some extreme cases can provoke mechanical failure or catastrophic damage. These phenomena have been extensively studied in the past, and the basic driving and coupling mechanisms have already been identified. However, it is well known that most systems behave differently at cold start and in the permanent regime and the coupling between the temperature of the solid material and combustion instabilities still remains unclear. The aim of this thesis is to study this mechanism. This work presents an experimental investigation of combustion instabilities for a laminar premixed flame stabilized on a slot burner with controlled wall temperature. For certain operating conditions, the system exhibits a combustion instability locked on the Helmholtz mode of the burner. It is shown that this instability can be controlled and even suppressed by changing solely the temperature of the burner rim. A linear stability analysis is used to identify the parameters playing a role in the resonant coupling and retrieves the features observed experimentally. Detailed experimental studies of the different elementary processes involved in the thermo-acoustic coupling are used to evaluate the sensitivity of these parameters to the wall temperature. Finally a theoretical model of unsteady heat transfer from the flame root to the burner-rim and detailed experimental measurements permit to establish the physical mechanism for the temperature dependance on the flame response.
|
17 |
Impact of transverse acoustic modes on a linearly arranged two-phase flow swirling flames / Impacte des modes acoustiques transversaux sur une ligne des flammes swirlées en combustion diphasiqueCaceres, Marcos 29 January 2019 (has links)
Les besoins énergétiques de la population mondiale ne cessent d’augmenter. Les prévisions indiquent par exemple une forte croissance de la demande du secteur du transport aéronautique. La recherche de systèmes toujours plus performants et moins polluants est nécessaire. Des nouveaux concepts pour la combustion ont été mis au point et appliqués aux turbines à gaz. Parmi eux il existe ceux basés sur la combustion en prémélange pauvre ou en prémélange pauvre pré-vaporisé dans le cas où le carburant utilisé est liquide. Les nouveaux systèmes énergétiques basés sur la combustion en régime pauvre sont prometteurs pour satisfaire les futures normes d’émissions polluantes, mais ils sont plus sensibles aux instabilités de combustion qui limitent leur plage de fonctionnement et peuvent détériorer irréversiblement ces systèmes. Dans ce domaine il reste des questions à aborder. En particulier celle du comportement des flammes tourbillonnaires en combustion diphasique soumises à des perturbations acoustiques. La plupart des moteurs aéronautiques utilisent des flammes de ce type, cependant leur dynamique et leurs interactions mutuelles, quand elles subissent les effets d’une perturbation acoustique, sont loin d’être bien comprises. Ce travail aborde ces questions et apporte des éléments de compréhension sur les mécanismes pilotant la réponse de l’écoulement diphasique et de la flamme, ainsi que des éléments de validation des modèles de prédiction des points de fonctionnement instables. TACC-Spray est le banc expérimental utilisé pour ce travail. Il a été conçu et développé au sein du laboratoire CORIA lors de ce doctorat qui s’inscrit dans le cadre du projet ANR FASMIC. Le système d’injection qui équipe ce banc expérimental reçoit trois injecteurs tourbillonnaires alimentés en combustible liquide (ici n-heptane), développés par le laboratoire EM2C. Ils sont montés en lignes dans le banc, celui-ci représentant ainsi un secteur d’une chambre annulaire. Le montage étant complexe et nouveau, un travail de développement de solutions techniques a été fait pour rendre possible l’équipement du TACC-Spray avec des capteurs de pression, température, photomultiplicateur ainsi que des diagnostiques optiques performants (e.g. LDA, PDA, imagerie à haute cadence). Pour cette étude, le système énergétique, composé par l’écoulement diphasique et la flamme, a été soumis à l’impact d’un mode acoustique transverse excité dans la cavité acoustique. La réponse du système a été étudiée en fonction de son positionnement dans le champ acoustique. Trois bassins d’influence du champ acoustique sur le système énergétique ont été choisis, à savoir: (i) le ventre de pression acoustique caractérisé principalement par des fortes fluctuations de pression, (ii) le ventre d’intensité acoustique présentant de forts gradients de pression et vitesse acoustique, (iii) le ventre de vitesse acoustique avec de fortes fluctuations de vitesse où la fluctuation de pression est résiduelle. L’approche de cette étude a consisté à étudier en premier lieu le système de référence en absence de forçage acoustique, les résultats sont recueillis dans la Partie I de ce manuscrit. En deuxième lieu le système énergétique est placé à chacune des positions d’intérêt dans le champ acoustique et la réponse de l’écoulement d’air sans combustion, la réponse de l’écoulement diphasique avec combustion et finalement celle des flammes, sont étudiées systématiquement. Les résultats de l’étude avec forçage acoustique sont rassemblés dans la Partie II du manuscrit. / The energy needs of population around the word are continuously increasing. For instance, forecasts indicates an important grow of the request of the aeronautic transportation sector. It is necessary to continue the research efforts to get more performants and less contaminating systems. New concepts for combustion have been developed and introduced to the gas turbine industry. Among these concepts it is found technologies based on lean-premixed combustion or lean-premixed prevaporized combustion when liquid fuels are employed. These novel energetic systems, making use of lean combustion, are promising to meet the future norms about pollutant emissions, but this make them more sensitive to combustion instabilities that limit their operating range and can lead to irreversible damage. In this domain, many questions still need to be considered. In particular that of the behavior of two-phase flow swirling flames subjected to acoustic perturbations. Indeed most of aero-engines operate with this type of flames, but the dynamics and mutual interaction of these flames, as they are submitted to acoustic perturbation, are not yet well understood. This work addresses these issues and gives some understanding elements for the mechanisms driving the response of the flow and of the flame to acoustic perturbations and delivers data to validate models predicting unstable operating points.The experimental bench employed for this work is TACC-Spray. It has been designed and developed in the CORIA laboratory during this PhD thesis which is inscribed in the framework of the ANR FASMIC project. The injections system that equips this bench is composed by three swirled injectors fed with a liquid fuel (here n-heptane), developed by the EM2C laboratory. They are linearly arranged in the bench such that this represents an unwrapped sector of an annular chamber. The setup, being new and complex, needed technical solutions developed during this work and applied then in order to equip TACC-Spray with pressure and temperature sensors, a photomultiplier as well as adequate optic diagnostics (LDA, PDA, high speed imaging systems). In this study, the energetic system, composed by the two-phase swirling flow and the spray flame, has been submitted to the impact of a transverse acoustic mode excited within the acoustic cavity. The system response has been studied as a function of its location in the acoustic field. Three basins of influence of the acoustic field on the energetic system have been chosen, namely: (i) the pressure antinode characterized mainly by strong pressure fluctuations, (ii) the intensity antinode where important acoustic pressure and velocity gradients are present, (iii) the velocity antinode with strong velocity fluctuations where the acoustic pressure is residual. The approach of the study presented here is to investigate in first place the energetic system free of acoustic forcing. The results concerning this first study are presented in the Part I of this manuscript. In second place, the energetic system is placed in each of the location of interest within the acoustic field and the response of the air flow without combustion, that of the two-phase flow with combustion and finally that of the spray flames, are systematically investigated. The results of the study under acoustic forcing are shown in Part II of the manuscript.
|
18 |
Experimental investigations on sooty flames at elevated pressuresGohari Darabkhani, Hamid January 2010 (has links)
This study addresses the influence of elevated pressures, fuel type, fuel flow rate and co-flow air on the flame structure and flickering behaviour of laminar oscillating diffusion flames. Photomultipliers, high speed photography and schlieren, accompanied with digital image processing techniques have been used to study the flame dynamics. Furthermore, the effects of pressure on the flame geometry and two-dimensional soot temperature distribution in a laminar stable diffusion flame have been investigated, utilising narrow band photography and two-colour pyrometry technique in the near infra-red region. This study provides a broad dataset on the diffusion (sooty) flame properties under pressures from atmospheric to 16 bar for three gaseous hydrocarbon fuels (methane, ethylene and propane) in a co-flow burner facility.It has been observed that the flame properties are very sensitive to the fuel type and flow rate at elevated pressures. The cross-sectional area of the stable flame shows an average inverse dependence on pressure to the power of n, where n was found to be 0.8±0.2 for ethylene flame, 0.5±0.1 for methane flame and 0.6±0.1 for propane flame. The height of a flame increases firstly with pressure and then decreases with further increase of pressure. It is observed that the region of stable combustion was markedly reduced as pressure was increased. An ethylene flame flickers with at least three dominant modes, each with corresponding harmonics at elevated pressures. In contrast, methane flames flicker with one dominant frequency and as many as six harmonic modes at elevated pressures. The increase in fuel flow rate was observed to increase the magnitude of oscillation. The flickering frequency, however, remains almost constant at each pressure. The dominant flickering frequency of a methane diffusion flame shows a power-law dependence on chamber pressure.It has been observed that the flame dynamics and stability are also strongly affected by the co-flow air velocity. When the co-flow velocity reached a certain value, the buoyancy driven flame oscillation was completely suppressed. The schlieren imaging has revealed that the co-flow of air is able to push the initiation point of outer toroidal vortices beyond the visible flame to create a very stable flame. The oscillation frequency was observed to increase linearly with the air co-flow rate. The soot temperature results obtained by applying the two-colour method in the near infra-red region shows that in diffusion flames the overall temperatures decrease with increasing pressure. It is shown that the rate of temperature drop is greater for a pressure increase at lower pressures in comparison with higher pressures.
|
19 |
Modeling questions for numerical simulations of aeronautical combustors / Questions de modélisation pour les simulations numériques de chambres de combustion aéronautiquesChatelier, Adrien 26 June 2019 (has links)
La conception de chambres de combustion aéronautiques requiert un compromis entre les différents phénomènes physiques présents, comme les interactions entre la flamme et la turbulence, les pertes thermiques, la dynamique de flamme ou l'évaporation du carburant et son mélange. De nombreux outils numériques existent dans la littérature pour prédire ce genre d'écoulements réactifs turbulents. Les modèles de turbulence instationnaires, par exemple LES (Large Eddy Simulation), sont un excellent compromis pour la prédiction du mélange dans des configurations réalistes. L'approche de chimie tabulée représente un équilibre attrayant entre coût de calcul et précision pour la prédiction de structure de flamme. Dans cette thèse, des modèles de turbulence avancés et de chimie tabulée sont appliqués à des configurations complexes afin d'évaluer leur capacité à prédire la structure de flammes turbulentes. La prédiction de la FDF (Flame Describing Function) par le modèle F-TACLES (Filtered TAbulated Chemistry for Large Eddy Simulations) est comparé à des données expérimentales pour une flamme swirlée, prémélangée et non-adiabatique. La FDF est bien prédite pour une large plage de fréquences et deux niveaux de fluctuations de vitesse. L'origine des différences est analysée. La première application du modèle F-TACLES à un brûleur diphasique est proposée. Le brûleur choisi est la flamme jet diphasique KIAI, récemment étudié au CORIA. Une comparaison détaillée avec l'expérience est faite et montre que F-TACLES est capable de prédire la bonne forme de flamme. Le modèle ZDES (Zonal Detached Eddy Simulation) est étudié dans la configuration TLC, un injecteur aéronautique réaliste. En non-réactif, la ZDES est validée par rapport aux mesures de vitesse expérimentales et comparée à des résultats de LES. En conditions réactives, la prédiction des profils de température dans la chambre de combustion est grandement améliorée en ZDES. / The design of aeronautical combustion chambers requires a precise balance between the different physical phenomena involved, such as flame-turbulence interaction, heat losses, flame dynamics or fuel evaporation and mixing. Numerous numerical tools exist in the literature to predict these kinds of turbulent reacting flows. The unsteady turbulence models, for example LES (Large Eddy Simulation), represent an excellent compromise for the prediction of the mixing in realistic configurations. The tabulated chemistry approach is an attractive trade-off between computation cost and accuracy for predicting the structure of flames. In this thesis, advanced turbulence and tabulated chemistry models are applied to complex configurations in order to assess their ability to predict the structure of turbulent flames. The prediction of the FDF (Flame Describing Function) by the F-TACLES (Filtered TAbulated Chemistry for Large Eddy Simulations) model is compared to experimental data for a non-adiabatic premixed swirled flame. The FDF is well predicted for a wide range of frequencies and two velocity fluctuation levels. The origin of the discrepancies is analyzed. The first application of the F-TACLES model in a two-phase burner is proposed. The chosen burner is the KIAI spray jet flame, recently studied at CORIA. A detailed comparison with the experiments is performed and shows that F-TACLES is able to predict the correct flame shape. The ZDES (Zonal Detached Eddy Simulation) model is studied in a realistic aeronautical injector, the TLC configuration. In cold conditions, the ZDES is validated against velocity measurements and compared to LES results. In reacting conditions, the prediction of temperature profiles in the combustion chamber is greatly improved in the ZDES.
|
Page generated in 0.0664 seconds