Spelling suggestions: "subject:"simulationlation aux brandes échelle"" "subject:"simulationlation aux arandes échelle""
1 |
Modélisation de la combustion d’un spray dans un brûleur aéronautiquePaulhiac, Damien 30 April 2015 (has links) (PDF)
La combustion d’hydrocarbures représente encore aujourd’hui une part très majoritaire de la production d’énergie mondiale, en particulier dans la propulsion aérospatiale. La plupart des brûleurs industriels sont alimentés par un carburant sous forme liquide, qui est injecté directement dans la chambre de combustion, ce qui génère une forte interaction entre le spray, l’écoulement turbulent et la zone de combustion. Cette interaction a déjà largement été étudiée, mais certaines questions restent ouvertes. En particulier, la prise en compte de la combustion de goutte isolée dans le cadre de la Simulation aux Grandes Echelles (‘Large Eddy Simulation’ LES) de géométries complexes reste un problème difficile. L’objectif de cette thèse est d’améliorer la modélisation de la combustion du spray dans le contexte de la LES de configurations complexes avec une approche Euler-Lagrange. Dans un premier temps, un modèle de combustion de gouttes incluant les différents régimes pour la LES, appelé MustARD pour « Multi-State Algorithm for Reacting Droplets », est proposé et validé dans plusieurs configurations académiques de complexité croissante. Dans un deuxième temps, MustARD est évalué sur une configuration de brûleur expérimental et comparé aux modèles classiques sans combustion de gouttes isolées. Cette étude montre que le régime de combustion de gouttes isolées n’est pas négligeable dans une telle configuration et qu’il modifie la structure de flamme. D’autre part, les comparaisons avec les résultats expérimentaux montrent que le modèle MustARD permet d’améliorer la précision des LES de sprays turbulents réactifs.
|
2 |
Modélisation de la structure et de la dynamique des flammes pour la simulation aux grandes échelles.Auzillon, Pierre 20 October 2011 (has links) (PDF)
Dans le contexte actuel, pour diminuer la consommation de fuel et les émissions de polluants comme le CO2 ou les NOx, les chambres de combustion aéronautiques de nouvelle génération sont basées sur la combustion partiellement prémélangée pauvre. La simulation numérique de ce type de chambre nécessite de prédire avec précision la température, la dynamique de flamme et la formation de polluants. Comme l'écoulement est fortement instationnaire, l'utilisation de la simulation aux grandes échelles s'avère nécessaire. C'est dans ce contexte que nous avons développé le modèle F-TACLES (Filtered Tabulated Chemistry for Large Eddy Simulation). Ce modèle se base sur un filtrage a priori de flammelettes calculées en prenant en compte les effets liés à la chimie détaillée. Il permet alors d'améliorer la prédiction des polluants et de la température tout en prenant en compte les contributions résolues et de sous maille de plissement, garantissant ainsi la bonne prédiction de la vitesse de propagation de la flamme. F-TACLES est appliqué à deux configurations d'injecteurs industriels étudiés expérimentalement : les chambres PRECCINSTA et MOLECULES. Sur le plan de la prédiction de la dynamique de flamme, le développement de F-TACLES a induit une réflexion plus générale sur la combustion en LES. En effet, l'ensemble des méthodes de simulation de la combustion introduisent un épaississement artificiel de la flamme afin de pouvoir la résoudre sur le maillage de calcul. L'impact de cet épaississement est étudié pour les approches TFLES (Thicken Flame for Large Eddy Simulation) et F-TACLES dans le cadre simplifié de la combustion prémélangée. Pour cela, une approche analytique ainsi que des simulations laminaires et turbulentes sont réalisées et comparées à des simulations directes (Direct Numerical Simulation) et à des données expérimentales. Pour finir, la chambre de combustion d'un hélicoptère est simulée avec l'approche F-TACLES pour reproduire et comprendre l'effet d'une modification géométrique observée expérimentalement.
|
3 |
Modèle de plissement dynamique pour la simulation aux grandes échelles de la combustion turbulente prémelangée / Dynamic wrinkling flame model for large eddy simulations of turbulent premixed combustionStefanin Volpiani, Pedro 06 February 2017 (has links)
Avec l’accroissement considérable de la puissance de calcul, les simulations aux grandes échelles (SGE) sont maintenant utilisées de façon routinière dans de nombreuses applications d’ingénierie. Les modèles de combustion usuels utilisés dans les SGE sont le plus souvent basés sur une hypothèse d’équilibre entre le mouvement des structures turbulentes et le plissement de la surface de la flamme. Ils s’écrivent alors sous forme d’expressions algébriques fonctions de grandeurs connues aux échelles résolues ainsi que de paramètres dont l’ajustement est à la charge de l’utilisateur selon la configuration étudiée et les conditions opératoires. Le modèle dynamique récemment développé ajuste automatiquement au cours du calcul les paramètres de modélisation qui peuvent alors dépendre du temps et de l’espace. Cette thèse présente une étude détaillée d’un modèle dynamique pour la simulation aux grandes échelles de la combustion turbulente prémélangée. L’objectif est de caractériser, explorer les avantages et les inconvénients, appliquer et valider le modèle dynamique dans plusieurs configurations. / Large eddy simulation (LES) is currently applied in a wide range of engineering applications. Classical LES combustion models are based on algebraic expressions and assume equilibrium between turbulence and flame wrinkling which is generally not verified in many circumstances as the flame is laminar at early stages and progressively wrinkled by turbulent motions. In practice, this conceptual drawback has a strong consequence: every computation needs its own set of constants, i.e. any small change in the operating conditions or in the geometry requires an adjustment of model parameters. The dynamic model recently developed adjust automatically the flame wrinkling factor from the knowledge of resolved scales. Widely used to describe the unresolved turbulent transport, the dynamic approach remains underexplored in combustion despite its interesting potential. This thesis presents a detailed study of a dynamic wrinkling factor model for large eddy simulation of turbulent premixed combustion. The goal of this thesis is to characterize, unveil pros and cons, apply and validate the dynamic modeling in different flow configurations.
|
4 |
Expérimentations et simulations numériques des interactions entre modes acoustiques transverses et flammes cryotechniquesRichecoeur, Franck 28 November 2006 (has links) (PDF)
L'objectif général de cette recherche est de contribuer à la compréhension des mécanismes fondamentaux conduisant à des instabilités de combustion dans les moteurs fusées à propulsion liquides.<br />Le processus implique un couplage fort entre la combustion et les modes acoustiques transverses de la chambre. Le problème est analysé au moyen d'une combinaison d'outils expérimentaux, numériques et de modélisation. <br />Les expériences sont réalisées sur une chambre équipée de plusieurs injecteurs coaxiaux placés en ligne et alimentés en oxygène liquide et méthane gazeux. On recrée ainsi au moins partiellement les conditions qui prévalent dans les moteurs fusées.<br />Le système a été conçu pour permettre une nette séparation entre les fréquences des modes longitudinaux et transverses. Le foyer est équipé de hublots donnant un accès optique à la zone de flamme et de capteurs de pression détectant les fluctuations de cette variable dans la chambre et dans le circuit d'alimentation en ergols. Un modulateur comportant une roue dentée tournant à grande vitesse et bloquant de façon périodique une tuyère auxiliaire permet d'injecter des perturbations acoustiques dans le système.<br />Des méthodes d'imagerie numérique sont utilisées pour examiner la dynamique des flammes. Des essais systèmatiques ont été réalisés à basse (0.9 MPa), moyenne (3 MPa) et haute pression (6 MPa) pour déterminer les conditions dans lesquelles la flamme est la plus sensible aux modulations acoustiques transverses. Un niveau de réponse remarquable a été observé dans les expériences à basse pression. Le niveau d'oscillation était dans ce cas de 8\% de la pression moyenne. La flamme est fortement modifiée lorsque le couplage est réalisé avec le premier mode acoustique transverse, son taux d'expansion est augmenté et la luminosité s'accroît sensiblement. La vitesse de convection des structures émissives observées par caméra rapide montre une réduction assez surprenante. Les relations de phase établies entre les preturbations de pression et de dégagement de chaleur dans la chambre montrent que ces deux quantités sont caractérisées par des distributions spatiales assez semblables. Les essais à pression intermédiaire réalisés avec un nouveau dispositif comportant 5 injecteurs induisant un dégagement de chaleur plus important montrent que la résonance est moins marquée, un phénomène qui est lié à un niveau de fluctuations de température plus élévé dans les nouvelles conditions de ces essais. Des expériences sont menées à froid par injection d'oxygène liquide et d'azote gazeux pour examiner le mouvement induit par une excitation acoustique transverse. Ces expériences sont complétées par des calculs numériques réalisés dans le cadre des simulations aux grandes échelles (SGE). Ces méthodes sont utilisées pour analyser le mouvement de jets coaxiaux en présence d'une modulation acoustique transverse imposée dans le domaine de calcul. L'oscillation induit un mouvement collectif et le mélange est intensifié.<br />Un modèle est développé pour le taux de réaction filtré permettant une description des flammes non prémélangées contrôlant la combustion cryotechnique. Des calculs initiaux sont effectués dans une configuration réaliste d'injecteurs multiples, alimentés en ergols gazeux. <br />Deux problèmes sont envisagés au niveau de la modélisation. Le premier traite de la relation entre les fluctuations de dégagement de chaleur et les perturbations de vitesse transverses. Une expression est proposée qui dépend de ces perturbations et du signe du gradient de vitesse transverse. Les conséquences de ce modèle sont examinées et il est notamment montré que l'on peut retrouver la structure du dégagement de chaleur observée dans des travaux antérieurs. <br />Le second modèle traite de l'influence de fluctuations de température sur les caractéristiques de résonance d'un système. La simulation directe et une analyse fondée sur la méthode des moyennes indique que l'amplitude de la résonance et la finesse de la réponse sont diminuées en présence de fluctuations, un phénomène qui semble avoir été négligé mais qui peut avoir des conséquences pratiques.<br />Les connaissances acquises dans ces études peuvent servir de guide à des développements de méthodes de calcul destinées à prévoir les instabilités. Elles peuvent aussi servir à développer des méthodes de conception permettant d'éviter le phénomène.
|
5 |
Simulation aux Grandes Échelles de l'Atomisation, Application à l'Injection Automobile.Chesnel, Jeremy 10 June 2010 (has links) (PDF)
L'injection liquide est un processus important dans beaucoup d'applications industrielles et plus spécifiquement au sein des moteurs à combustion. Beaucoup de méthodes RANS (Reynolds Averaged Navier-Stokes) ont été développées, dans le cas de l'atomisation, aussi bien en utilisant le formalisme Lagrangien que Eulérien. Cependant, les simulations LES (Large Eddy Simulation) sont connues pour être plus précises et mieux représenter les phénomènes physiques dans le cas monophasique. Développer la LES pour le cas diphasique est donc naturellement une étape nécessaire à franchir. Cependant, la simulation de l'atomisation requiert un traitement spécial de l'interface. Deux cas limites sont traités dans la littérature : - L'interface peut être bien capturée par le maillage. A ces endroits la LES doit rejoindre les résultats de méthodes classiques utilisées en DNS comme les méthodes VOF ou level-set. Ceci est une approche nécessaire proche injecteur. - Le maillage ne permet plus de suivre fidèlement l'interface, lors de la création de plissements inférieurs à la taille d'une maille. Dans ce cas le calcul doit reproduire les résultats d'une LES considérant des structures et des gouttes inférieures à la taille de la maille. Cette approche est nécessaire loin de l'injecteur dans la zone dispersée. C'est dans ce cadre que le travail réalisé durant cette thèse s'articule : Le développement d'un modèle LES d'atomisation capable de passer continument d'une méthode à l'autre. La mise en œuvre de ce modèle a permis d'obtenir des résultats dans une configuration proche de l'injection Diesel, qui sont alors comparés à une base de données DNS.
|
6 |
Développement d'un modèle de flamme épaissie dynamique pour la simulation aux grandes échelles de flammes turbulentes prémélangéesYoshikawa, Itaru 23 June 2010 (has links) (PDF)
La simulation numérique est l'un des outils les plus puissants pour concevoir etoptimiser les systèmes industriels. Dans le domaine de la Dynamique des FluidesNumériques (CFD, "Computational Fluid Dynamics"), la simulation auxgrandes échelles (LES, "Large Eddy Simulation") est aujourd'hui largementutilisée pour calculer les écoulements turbulents réactifs, où les tourbillons degrande taille sont calculés explicitement, tandis que l'effet de ceux de petitetaille est modelisé. Des modèles de sous-mailles sont requis pour fermer leséquations de transport en LES, et dans le contexte de la simulation de la combustionturbulente, le plissement de la surface de flamme de sous-maille doitêtre modélisé.En général, augmenter le plissement de la surface de flamme de sous-maille favorisela combustion. L'amplitude de la promotion est donnée par une fonctiond'efficacité, qui est dérivée d'une hypothèse d'équilibre entre la production etla destruction de la surface de flamme. Dans les méthodes conventionnelles,le calcul de la fonction d'efficacité nécessite une constante qui dépend de lagéométrie de la chambre de combustion, de l'intensité de turbulence, de larichesse du mélange de air-carburant etc, et cette constante doit être fixée audébut de la simulation. Autrement dit, elle doit être déterminé empiriquement.Cette thèse développe un modèle de sous-maille pour la LES en combustionturbulente, qui est appelé le modèle dynamique de flammelette épaissie (DTF,"dynamic thickened flamelet model"), qui détermine la valeur de la constanteen fonction des conditions de l'écoulement sans utiliser des données empiriques.Ce modèle est tout d'abord testé sur une flamme laminaire unidimensionnellepour vérifier la convergence de la fonction d'efficacité vers l'unité (aucun plissementde la surface de flamme de sous-maille). Puis il est appliqué en combinaisonavec le modèle dynamique de Smagorinsky (Dynamic Smagorinskymodel) aux simulations multidimensionnelles d'une flamme en V, stabilisée enaval d'un dièdre. Les résultats de la simulation en trois dimensions sont alorscomparés avec les données expérimentales obtenues sur une expérience de mêmegéométrie. La comparaison montre la faisabilité de la formulation dynamique.
|
7 |
Développement d'une modélisation basée sur la tabulation de schémas cinétique complexe pour la simulation aux grandes échelles (LES) de l'autoflammation et de la combustion turbulente non prémélangée dans les moteurs à pistonsTillou, Julien 29 January 2013 (has links) (PDF)
Dans un contexte où les questions environnementales et énergétiques ont une importance capitale, les constructeurs automobiles sont fortement poussés à développer des moteurs à combustion interne toujours plus économes et moins polluants. Pour le développement de procédés de combustion innovants et l'amélioration de leur compréhension, la simulation aux grandes échelles apparaît comme un outil prometteur. Ce travail de thèse traite du développement et de la validation d'un modèle pour la simulation aux grandes échelles de la combustion Diesel. Le modèle ADF-PCM, basé sur la tabulation de flammes de diffusion approchées auto-inflammantes étirées et permettant la prise en compte d'une cinétique chimique détaillée, est utilisé dans ces travaux. Le modèle ADF est tout d'abord introduit. Il permet d'approximer des flammes de diffusion laminaires à partir de flammelettes dont les termes chimiques proviennent de calculs de réacteurs homogènes. La première étape de ces travaux consiste à valider ces flammes de diffusion approchées dans des configurations proches de celles observées dans les moteurs Diesel. Le modèle ADF-PCM, initialement développé dans un formalisme RANS, est ensuite étendu à un formalisme LES pour des écoulements diphasiques et intégré dans le code LES compressible AVBP. Un modèle de stratification en température ainsi que les termes de couplage avec la phase liquide décrite par un formalisme Eulérien sont développés. Le modèle ADF-PCM est ensuite validé sur deux expériences de sprays Diesel en enceinte fermée. Il permet une bonne reproduction des résultats expérimentaux en termes de délai d'auto-inflammation, de dégagement de chaleur et de hauteur d'accrochage de la flamme. Les prédictions du modèle ADF-PCM sont ensuite comparées avec celles d'autres modèles faisant différentes hypothèses simplificatrices par rapport à la structure de flamme et la stratification en sous-maille de la fraction de mélange. Les résultats obtenus à l'aide de ces différents modèles soulignent la nécessité de la prise en compte de ces effets, même pour des résolutions spatiales fines. Finalement, des comparaisons entre les résultats expérimentaux et la simulation sont réalisées avec le modèle ADF-PCM pour différents taux de gaz recirculants. Celui-ci montre une reproduction qualitative de l'effet des gaz recirculants sur la combustion.
|
8 |
Modélisation de la combustion turbulente : application des méthodes de tabulation de la chimie détaillée l'allumage forcéV. Subramanian, Subramanian 12 January 2010 (has links) (PDF)
L'optimisation des systèmes d'allumage est un paramètre critique pour la définition des foyers de combustion industriels. Des simulations aux grandes échelles (ou LES pour Large-Eddy Simulation) d'un brûleur de type bluff-body non pré-mélangé ont été menées afin de comprendre l'influence de la position de la bougie sur la probabilité d'allumage. La prise en compte de la combustion est basée sur une méthode de tabulation de la chimie détaillée (PCM-FPI pour Presumed Conditional Moments - Flame Prolongation of ILDM). Les résultats de ces simulations ont été confrontés des résultats expérimentaux disponibles dans la littérature. Dans un premier temps, les mesures de vitesse et du champ de richesse à froid sont comparées aux résultats de la simulation pour évaluer les capacités de prédiction en terme de structure de l'écoulement et de mélange turbulent. Un suivi temporel des vitesses et de la fraction de mélange est réalisé à différents points pour déterminer les fonctions de densité de probabilité (ou PDF)des variables caractéristiques de l'écoulement, à partir des champs résolus en LES. Les PDFs ainsi obtenues servent l'analyse des phénomènes d'allumages réussis ou déficients rencontrés expérimentalement. Des simulations d'allumage forcé ont été effectuées pour analyser les différents scénarios de développement de la flamme. Les corrélations entre les valeurs locales (fraction de mélange, vitesse) autour de la position d'allumage et les chances de succès de développement du noyau de gaz brûlés sont alors discutées. Enfin, une extension de la méthode PCM-FPI avec prise en compte des effets d'étirement est développée à l'aide d'une analyse asymptotique, puis confrontée aux résultats de mesures expérimentales.
|
9 |
Adaptation of phase-lagged boundary conditions to large-eddy simulation in turbomachinery configuration / Adaptation de conditions aux limites chorochroniques à la simulation aux grandes échelles d'un étage de turbomachineMouret, Gaëlle 30 June 2016 (has links)
Dans un contexte d'amélioration des moteurs aéronautiques en termes de consommation et de pollution, les simulations numériques apparaissent comme un outil intéressant pour mieux comprendre et modéliser les phénomènes turbulents qui se produisent dans les turbomachines. La simulation aux grandes échelles (SGE) d’un étage de turbomachine à des conditions réalistes (nombre de Mach, nombre de Reynolds…) reste toutefois hors de portée dans le cadre industriel. La méthode chorochronique, aujourd’hui largement utilisée pour les calculs URANS, permet de réduire le coût des simulations numériques, mais elle implique de stocker le signal aux frontières du domaine pendant une période complète de l’écoulement. Le stockage direct de l’information étant exclu étant donné la taille des maillages et les pas de temps mis en jeu, la solution la plus courante actuellement est de décomposer le signal sous la forme de séries de Fourier. Cette solution ne retient du signal qu’une fréquence fondamentale (la fréquence de passage de la roue opposée) et un nombre limité d’harmoniques. Dans le cadre d’une SGE, elle implique donc une grande perte d’énergie, et le filtrage des phénomènes décorrélés de la vitesse de rotation comme par exemple un lâcher tourbillonnaire. Le remplacement de la décomposition en séries de Fourier par une décomposition aux valeurs propres (POD pour Proper Orthogonal Decomposition) permet de stocker le signal aux interfaces sans faire d’hypothèse sur les fréquences contenues dans le signal et donc de réduire la perte d’énergie liée à l’utilisation d’un modèle réduit. La compression s’effectue en supprimant les plus petites valeurs singulières et les vecteurs associés. Cette nouvelle méthode est validée sur la simulation URANS d'étages de turbomachines et comparée aux conditions classiques utilisant les séries de Fourier et à des calculs de références contenant plusieurs aubes par roue. Elle est ensuite appliquée à la simulation aux grandes échelles de l'écoulement d'un cylindre. Les erreurs causées par l'hypothèse chorochronique et par la compression sont séparées et on montre que l'utilisation de la POD permet de réduire de moitié le filtrage des fluctuations de vitesses par rapport aux séries de Fourier pour un même taux de compression. Enfin, la simulation aux grandes échelles d'un étage de turbomachine avec des conditions chorochroniques POD est réalisée afin de valider la méthode dans le cadre d'une configuration industrielle. / The more and more restrictive standards in terms of fuel consumption and pollution for aircraft engines lead to a constant improvement of their design. Numerical simulations appear as an interesting tool for a better understanding and modeling of the turbulent phenomena which occur in turbomachinery. The large-eddy simulation (LES) of a turbomachinery stage at realistic conditions (Mach number, Reynolds number...) remains out of reach for industrial congurations. The phase-lagged method, widely used for unsteady Reynolds-averaged Navier--Stockes (URANS) calculations, is a good candidate to reduce the computational cost. However, it needs to store the signal at all the boundaries over a full passage of the opposite blade. A direct storage of the information being excluded given the size of the mesh grid and timesteps involved, the most used solution currently is to decompose the signal into Fourier series. This solution retains the fundamental frequency of the signal (the opposite blade passage frequency) and a limited number of harmonics. In the frame of a LES, as the spectra are broadband, it implies a loss of energy. Replacing the Fourier series decomposition by a proper orthogonal decomposition (POD) allows the storage of the signal at the interfaces without making any assumptions on the frequency content of the signal, and helps to reduce the loss of energy caused by the phase lagged method. The compression is done by removing the smallest singular values and the associated vectors. This new method is first validated on the URANS simulations of turbomachinery stages and compared with Fourier series-based conditions and references calculations with multiple blades per row. It is then applied to the large eddy simulation of the flow around a cylinder. The error caused by the phase-lagged assumption and compression are separated and it is showed that the use of the POD allows to halve the filtering of the velocity fluctuations with respect to the Fourier series, for a given compression rate. Finally, the large eddy simulation of a compressor stage with POD phase-lagged conditions is carried out to validate the method for realistic turbomachinery configurations.
|
10 |
Far-field combustion noise modeling of turbofan engine / Outils de prévision du bruit de chambre de combustion de turboréacteursFérand, Mélissa 06 February 2018 (has links)
Depuis l'introduction du moteur à réaction pour la propulsion des avions dans les années 1950, l'acoustique est devenue d'un grand intérêt pour l'industrie du moteur. Alors que les turboréacteurs initiaux étaient dominés par le bruit de jet, l'introduction du moteur à turbofan dans les années 1960 a permis d'atténuer le bruit de jet, mais a introduit le bruit de soufflante. Dans les années 1970, grâce à de nouvelles conceptions avancées pour la réduction du bruit, une réduction majeure du bruit des avions s'en est suivie et la contribution du bruit de combustion a été remise en question. En effet, une réglementation plus restrictive du bruit pourrait exiger que le bruit de fan et de jet soient réduits au point où une réduction du bruit de combustion devienne également nécessaire. En outre, la conception des chambres de combustion est pilotée uniquement par la restriction des polluants chimiques produits par la combustion, l'efficacité et la consommation. L'impact de ces nouveaux concepts sur le bruit de combustion n'est actuellement pas une contrainte prise en compte lors de la conception. Avant d'envisager de réduire le bruit de combustion, il faut d'abord en comprendre les différents mécanismes. Cependant, proposer une méthode de prédiction pour le bruit de combustion n'est pas une tâche facile en raison des multiples interactions physiques impliquées lors des processus de combustion. De nombreuses expériences existent pour évaluer le bruit de combustion causé par les flammes ou des chambres de combustion simplifiées. Cependant, seuls quelques-uns considèrent le chemin de propagation complet du bruit de combustion provenant d'un moteur, car il est difficile d'isoler cette source acoustique du bruit des autres modules du moteur. Les méthodes empiriques basées sur des extrapolations et des simplifications sont souvent utilisées pour prédire le bruit de combustion des moteurs aéronautiques. De nombreuses analogies acoustiques ont également été dérivées à partir de Lighthill. Les travaux de cette thèse proposent d'étudier le bruit de combustion provenant d'un moteur d'avion à l'aide d'une chaine de calcul traitant différents modules de la génération du bruit de combustion à sa propagation en champ lointain. Ils mettent en évidence l'importance du bruit de combustion pour différents points de fonctionnement. Les mécanismes générateurs du bruit seront identifiés dans la chambre de combustion. Le rôle de la turbine en tant qu'atténuateur le bruit et générateur de bruit indirect sera évalué ainsi que la propagation en champ lointain en considérant des milieux inhomogènes. Enfin, uns stratégie alternative sera également proposée afin de considérer l'interaction entre le bruit de combustion et le bruit de jet. Pour se faire des LES de jet forcé par le bruit de combustion seront réalisées. Une nouvelle approche sera proposée à partir de ces résultats qui semblent montrer que le bruit de combustion a un impact sur la turbulence du jet. / Since the introduction of jet engine for aircraft propulsion in the 1950's, acoustics has become of great interest to the engine industry. While the initial turbojets were jet noise dominated, the introduction of turbofan engine in the 1960's gave relief in jet noise, but introduced fan noise. In the 1970's, with advanced noise reduction design features which provided a major reduction in aircraft noise, combustion noise became an interrogation. Indeed, more restrictive noise regulations could require that noise from the fan and jet be reduced to the point where combustion noise reduction may be required. Moreover, burner designs is controlled solely by the restriction of chemical pollutants produced by combustion, efficiency and consumption. The impact of these new concepts on combustion noise is not a strong constraint for design. Before considering to reduce combustion noise, it is necessary to first understand the different mechanisms. However, proposing a prediction method for combustion noise is not an easy task due to the multiple physical interactions involved during the combustion processes. Many experiments exist to evaluate the combustion noise from flames or combustion test rig. However, only a few include the complete propagation path of combustion noise within an engine device as it is difficult to isolate this acoustic source from the noise of the other engine modules. Empirical methods based on extrapolations and simplifications are often used for the prediction of combustion noise within modern aero-engines. Numerous acoustic analogies have also been derived from Lighthill. The work of this thesis proposes to study the combustion noise coming from an aircraft engine using a computational chain treating different modules from the generation of combustion noise to its propagation in far field. The importance of combustion noise for different operating points is highlighted. The noise-generating mechanisms will be identified in the combustion chamber. The role of the turbine as a noise attenuator and indirect noise generator will be evaluated as well as the far-field propagation considering inhomogeneous fields. Finally, an alternative strategy will also be proposed in order to consider the interaction between combustion noise and jet noise. To do so, LES of jet flow forced with combustion noise will be performed. A new approach will be proposed based on these results which seem to show that the combustion noise has an impact on the turbulence of the jet.
|
Page generated in 0.1653 seconds