• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 7
  • 7
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An experimental study of spray collapse under ash boiling conditions

Du, Jianguo 07 1900 (has links)
Gasoline and gasoline-like fuels (naphtha) have high volatility, which results in flash boiling spray in gasoline engines when operated at throttling or low load conditions. Flash boiling can achieve better atomization, thus benefit fuel evaporation and fuel-air mixing. However, when flash boiling occurs, spray morphology, and fuel distribution are dramatically varied from the injectors' intentional design. This difference will affect the performance of combustion and emissions. Thus it is essential to investigate the spray collapse phenomenon regarding varied conditions. The currently developing gasoline compression ignition (GCI) engines, also has throttled stoichiometric spark ignition operation mode, which inevitably has flash boiling possibility. However, there is a lack of research on flash boiling spray with a GCI injector, which has a large designed cone angle. This work aims to understand the spray collapse phenomenon and fill the gap in GCI flash boiling spray. Simultaneous side-view diffused back illumination (DBI) and front-view mie-scattering are used to capture the liquid spray development. Simultaneous shadowgraph from side and front view are used for recording the liquid+vapor phase spray development. Criteria for distinguishing different spray regimes have been established from these results. It shows this GCI injector is more resistant to collapse than the other conventional gasoline direct injection (GDI) injectors reported in the literature. A combination of DBI and space-time tomographic algorithm is validated in this work, achieving 3D reconstruction of the spray volume development from non-flashing to collapsed spray regime at low cost. The 3D results help elucidate the spray collapse procedure and provide validation data for CFD simulation. Structured laser illumination planar imaging (SLIPI) is firstly implemented in flash boiling spray study in this work to suppress the multiple scattering effect. Reconstructed 3D results from slice sweeping by SLIPI methods exposes the hollow structure in the spray's collapsed central jet, which has not been reported previously by other methods. Different spray motion types are summarized for the transitional and collapsed spray regime from the SLIPI slice and confirmed by the particle image velocimetry (PIV) technique.
2

Optical investigations of the sprays generated by gasoline multi-hole injectors under novel operating conditions

Wood, Andrew January 2014 (has links)
Political, environmental and marketing factors mean there is a global requirement to produce vehicles with improved fuel economy and reduced emissions. This thesis shows that the gasoline direct injection (GDI) engine will continue to form a significant portion of the automotive propulsion market in the short to medium term. However, to reach future targets continuous development and optimisation of these engines is essential. The introduction to this thesis discusses the role some of the key aspects of GDI engine design have on overall engine efficiency. The fuel spray is shown to be a key contributor to this, as it is a primary driver in the fuel/air mixing process, and therefore intrinsically linked to the combustion efficiency.
3

Modeling of Flash Boiling Flows in Injectors with Gasoline-Ethanol Fuel Blends

Neroorkar, Kshitij Deepak 01 February 2011 (has links)
Flash boiling may be defined as the finite-rate mechanism that governs phase change in a high temperature liquid that is depressurized below its vapor pressure. This is a transient and complicated phenomenon which has applications in many industries. The main focus of the current work is on modeling flash boiling in injectors used in engines operating on the principle of gasoline direct injection (GDI). These engines are prone to flash boiling due to the transfer of thermal energy to the fuel, combined with the sub-atmospheric pressures present in the cylinder during injection. Unlike cavitation, there is little tendency for the fuel vapor to condense as it moves downstream because the fuel vapor pressure exceeds the downstream cylinder pressure, especially in the homogeneous charge mode. In the current work, a pseudo-fluid approach is employed to model the flow, and the non-equilibrium nature of flash boiling is captured through the use of an empirical time scale. This time scale represents the deviation from thermal equilibrium conditions. The fuel composition plays an important role in flash boiling and hence, any modeling of this phenomenon must account for the type of fuel being used. In the current work, standard, NIST codes are used to model single component fluids like n-octane, n-hexane, and water, and a multi-component surrogate for JP8. Additionally, gasoline-ethanol blends are also considered. These mixtures are azeotropic in nature, generating vapor pressures that are higher than those of either pure component. To obtain the properties of these fuels, two mixing models are proposed that capture this non-ideal behavior. Flash boiling simulations in a number of two and three dimensional nozzles are presented, and the flow behavior and phase change inside the nozzles is analyzed in detail. Comparison with experimental data is performed in cases where data are available. The results of these studies indicate that flash boiling significantly affects the characteristics of the nozzle spray, like the spray cone angle and liquid penetration into the cylinder. A parametric study is also presented that can help understand how the two different time scales, namely the residence time in the nozzle and the vaporization time scale, interact and affect the phenomenon of flash boiling.
4

RANS and LES of multi-hole sprays for the mixture formation in piston engines

Khan, Muhammad 20 January 2014 (has links)
Cette thèse porte sur la simulation des jets de gouttes générés par des pulvérisateurs essence haute pression, pulvérisateurs qui sont un point clef des systèmes de combustion automobile de la présente et future génération devant diminuer les émissions de CO2 et de polluants. Dans un premier temps les jets de gouttes (« sprays ») sont simulés par simulation moyennée. Les résultats de simulation d’un jet donnant des résultats en moyenne satisfaisant, l'interaction de jets en injecteurs multi-trous est alors simulée. Les résultats sont cohérents par rapport aux mesures d'entraînement d’air. La simulation permettant d'avoir accès au champ complet 3D, le mécanisme d'interaction jet à jet et de développement instationnaire du spray est décrit en détail. La formation d’un mouvement descendant au centre du spray et celle d'un point d'arrêt central sont trouvés. Finalement, Ces résultats sont étendus au cas surchauffé, cas où la pression dans la chambre est inférieure à la pression de vapeur saturante. Un modèle simple semi-empirique est proposé pour tenir compte de la modification des conditions proches de la buse d’injection. Le modèle prédit correctement les tendances des variations de paramètres et capture la forme générale du spray qui se referme sur lui-même. La seconde grande partie est consacrée au développement d’un modèle de spray par l’approche des grandes échelles (SGE), limité ici aux cas non évaporant. Il comprend la modélisation de sous-maille de la dispersion turbulente, des collisions-coalescence et des termes d’échange de quantité de mouvement de sous-maille. L'effet du choix du modèle de sous-maille pour la viscosité turbulente de sous-maille est montré, le choix retenu étant le modèle de Smagorinski dynamique. Afin d'améliorer la représentativité cruciale des conditions d’injections, un couplage faible est réalisé à partir de résultats de simulations existantes de l'écoulement interne aux buses. Les fonctions densité de probabilité simple et jointes extraits des résultats de simulations sont validés par rapport aux mesures PDA en situation pseudo-stationnaire et la pénétration liquide et la forme du spray est comparée aux visualisations par ombroscopie. Enfin, différentes zones caractéristiques sont identifiées et des longueurs sont notées pour les cas d'injection à 100 et 200bar. / Over the years numerical modelling and simulation techniques have constantly been improved with the increase in their use. While keeping the computational resources in mind, numerical simulations are usually adapted to the required degree of accuracy and quality of results. The conventional Reynolds Average Navier Stokes (RANS) is a robust, cheap but less accurate approach. Large Eddy Simulation (LES) provides very detailed and accurate results to the some of the most complex turbulence cases but at higher computational cost. On the other hand, Direct Numerical Simulation (DNS) is although the most accurate of the three approaches but at the same time it is computationally very expensive which makes it very difficult to be applied to the most of the complex industrial problems. The current work is aimed to develop a deeper understanding of multi-hole Gasoline Direct Injection (GDI) sprays which pose many complexities such as; air entrainment in the multi-hole spray cone, Jet-to-Jet interactions, and changes in the spray dynamics due to the internal flow of the injector. RANS approach is used to study multi-hole injector under cold, hot and superheated conditions. Whereas, LES is utilized to investigate the changes in the dynamics of the single spray plume due to the internal flow of the GDI injector. To reduce computational cost of the simulations, dynamic mesh refinement has been incorporated for both LES and RANS simulation. A thorough investigation of air entrainment in three and six hole GDI injectors has been carried out using RANS approach under non superheated and superheated conditions. The inter plume interactions caused by the air entrainment effects have been analysed and compared to the experimental results. Moreover, the tendencies of semi collapse and full collapse of multi-hole sprays under non superheated and superheated conditions have been investigated in detail as well. A methodology of LES has been established using different injection strategies along with various subgrid scale models for a single spray plume. In GDI multi-hole sprays, the internal flow of the injector plays a very crucial role in the outcome the spray plume. A separate already available internal flow LES simulation of the injector has been coupled with the external spray simulation in order to include the effect of nozzle geometry and the cavitation phenomenon which completely change the dynamics of the spray.
5

Optical analysis of multi-stream GDI sprays under various engine operating conditions

Mojtabi, Mehdi January 2011 (has links)
The design and optimisation of a modern gasoline direct injection (GDI) engine requires a thorough understanding of the fuel sprays characteristics and atomisation process.Therefore this thesis presents a detailed optical analysis of atomisation, penetration and interaction of multi-stream GDI sprays under engine relevant pressures and temperatures. The characteristics of the fuel spray in a GDI engine have a great influence on the fuel-air mixing and combustion processes as fuel injectors must provide adequate atomisation for vaporisation of the fuel to take place before combustion is initiated, whilst also avoiding spray impingement on the cylinder walls or piston crown. In this study multi-stream injectors, to be used within GDI engines, are quantified using Laser Doppler Anemometry (LDA) on an atmospheric bench. This process allowed for highly detailed spray analysis of droplet velocities and diameter at precise locations, using a three dimensional traverse, within the injector spray. The aim of the study was to analyse plume interaction between separate plumes of multi-stream injectors. Three multi-stream injectors were subjected to testing; two six-hole injectors and one three-hole injector. The injectors differed by having different distances between the plumes. The effect of fuel type on the liquid break-up and atomisation was investigated using Phase Doppler Anemometry (PDA) and Mie imaging. Mie imaging was also performed to capture images of fuel from a multi-stream injector as it was sprayed into a pressure chamber which was used to recreate the conditions found in an engine likely to cause flash boiling. In total, five variables were investigated: fuel pressure, ambient pressure, ambient temperature, fuel composition and injector geometry. Once processed, the recorded images allowed measurement of spray tip penetration and cone angle. Qualitative data on the change in shape of the spray was also available. The results showed that flash boiling has potential to reduce droplet diameters and improve fuel vaporisation, however, the associated change in spray shape must be taken into account to avoid problems with spray impingement. Keywords: Gasoline Direct Injection, multi-stream injector, atomisation, penetration, cone angle, Mie imaging, Phase Doppler Anemometry, flash boiling.
6

Study of the Gasoline Direct Injection Process under Novel Operating Conditions

Bautista Rodríguez, Abián 11 June 2021 (has links)
[ES] La inyección de combustible es, entre los temas de investigación de motores, una de las piezas críticas para obtener un motor eficiente. El papel es aún más significativo cuando se persigue una estrategia de inyección directa. La geometría interna y el movimiento de la aguja determinan el comportamiento del flujo del inyector, que se sabe que afecta enormemente al desarrollo externo del spray y, en última instancia, al rendimiento de la combustión dentro de la cámara. La conciencia sobre el cambio climático y los contaminantes ha ido creciendo, impulsando el esfuerzo en motores más limpios. En este sentido, los motores de gasolina tienen un margen más amplio para mejo- rar que los motores diesel. La evolución de los antiguos PFI a las modernas estrategias de inyección directa, que se utilizan en los motores de nueva generación, demuestra esta tendencia. Los sistemas GDI tienen el potencial de cumplir con las estrictas emisiones y aumentar el ahorro de combustible, sin embargo, todavía se enfrenta a muchos desafíos. Este trabajo implica el uso de dos inyectores, uno es una moderna tobera de GDI de investigación designada por el Engine Combustion Network (ECN), y el otro es una unidad de inyección de producción (PIU) con la misma tecnología y una geometría ligeramente diferente. Ambos equipos se someten a una completa caracterización (flujo interno y externo) que abarca las técnicas más avanzadas en diversas instalaciones experimentales. Además, se diseña y construye una nueva instalación para realizar experimentos en condiciones de evaporación instantánea (cuando la presión de vapor del combustible inyectado es superior a la presión del volumen de descarga). La instalación construida está diseñada para simular un ambiente de descarga en ciertas condiciones del motor en las que podrían producirse fenómenos de flash boiling. Así, debido a las propiedades típicas del combustible de gasolina, era un requisito operar con presiones de cámara de 0,2 a 15 bares. Además, la temperatura ambiente se controlaba mediante la implementación de una resistencia que puede calentar el gas ambiente. La instalación funciona en un bucle abierto, pudiendo renovar el volumen de gas entre las inyecciones. Por último, se construyeron tres amplios accesos ópticos para acomodar muchas técnicas de diagnóstico óptico como DBI, MIE, shadowgraphy o PDA, entre otros. Para la evaluación del flujo interno se determinó la geometría de las toberas y la orientación de los agujeros, el movimiento de la aguja y, por último, la caracterización del ratio de inyección (ROM) y el momento de inyección (ROI) de ambas toberas. La geometría de las toberas y la elevación de la aguja se midieron mediante técnicas avanzadas de rayos X en el Laboratorio Nacional de Argonne (ANL). Las mediciones de ROI y ROM se realizaron utilizando las instalaciones de CMT-Motores Térmicos siguiendo los conocimientos técnicos aplicados en los inyectores de gasóleo y adaptándolos a las toberas de GDI. El ROI nos permitió comparar las boquillas, cuyo número de orificios y geometría eran diferentes, aunque entregan aproximadamente la misma cantidad de combustible. Se ensayó la respuesta a condiciones típicas de motor como variaciones en la presión del rail, la presión de descarga, la temperatura del combustible, etc. Para el inyector de investigación "Spray G", se desarrolló un modelo 0-D de la velocidad de inyección que permite obtener la señal para diferentes condiciones y duración de la inyección, lo cual es útil para la calibración del motor y la validación del CFD. Además, para la caracterización de la ROM, se desarrolló la metodología de la técnica de deformación plástica para obtener la orientación del cono del spray y orientar adecuadamente los chorros de combustible para la medición de ROM. En el análisis hidráulico se combinaron los datos para estudiar los bajos valores del coeficiente de descarga y / [CA] La injecció de combustible és, entre els temes d'investigació de motors, una de les peces crítiques per a obtindre un motor eficient. El paper és encara més significatiu quan es persegueix una estratègia d'injecció directa. La geometria interna i el moviment de l'agulla determinen el comportament del flux de l'injector, que se sap que afecta enormement el desenvolupament extern de l'esprai i, en última instància, al rendiment de la combustió dins de la cambra. La consciència sobre el canvi climàtic i els contaminants ha anat creixent, impulsant l'esforç en motors més nets. En aquest sentit, els motors de gasolina tenen un marge més ampli per a millorar que els motors dièsel. L'evolució dels antics PFI a les modernes estratègies d'injecció directa, que s'utilitzen en els motors de nova generació, demostra aquesta tendència. Els sistemes GDI tenen el potencial de complir amb les estrictes emissions i aug- mentar l'estalvi de combustible, no obstant això, encara s'enfronta a molts desafiaments. Aquest treball implica l'ús de dos injectors, un és una moderna tovera de GDI d'investigació designada pel Engine Combustion Network (ECN), i l'altre és una unitat d'injecció de producció (PIU) amb la mateixa tecnologia i una geometria lleugerament diferent. Tots dos equips se sotmeten a una completa caracterització (flux intern i extern) que abasta les tècniques més avançades en diverses instal·lacions experimentals. A més, es dissenya i construeix una nova instal·lació per a realitzar experiments en condicions d'evaporació instantània (quan la pressió de vapor del combustible injectat és superior a la pressió del volum de descàrrega). La instal·lació construïda està dissenyada per a simular un ambient de descàrrega en certes condicions del motor en les quals podrien produir-se fenòmens de flash boiling. Així, a causa de les propietats típiques del combustible de gasolina, era un requisit operar amb pressions de cambra de 0,2 a 15 bars. A més, la temperatura ambient es controlava mitjançant la implementació d'una resistència que pot calfar el gas ambiente. La instal·lació funciona en un bucle obert, podent renovar el volum de gas entre les injeccions. Finalment, es van construir tres amplis accessos òptics per a acomodar moltes tècniques de diagnòstic òptic com DBI, MIE, shadowgraphy o PDA, entre altres. Per a l'avaluació del flux intern es va determinar la geometria de les toveres i l'orientació dels forats, el moviment de l'agulla i, finalment, la caracterització del ràtio d'injecció (ROM) i el moment d'injecció (ROI) de totes dues toveres. La geometria de les toveres i l'elevació de l'agulla es van mesurar mitjançant tècniques avançades de raigs X en el Laboratori Nacional de Argonne (ANL). Els mesuraments de ROI i ROM es van realitzar utilitzant les instal·lacions de CMT-Motores Térmicos seguint els coneixements tècnics aplicats en els injectors de gasoil i adaptant-los a les toveres de GDI. El ROI ens va permetre comparar els filtres, el nombre d'orificis dels quals i geometria eren diferents, encara que entreguen aproximadament la mateixa quantitat de combustible. Es va assajar la resposta a condicions típiques de motor com a variacions en la pressió del rail, la pressió de descàrrega, la temperatura del combustible, etc. Per a l'injector d'investigació "Esprai G", es va desenvolupar un model 0-D de la velocitat d'injecció que permet obtindre el senyal per a diferents condicions i duració de la injecció, la qual cosa és útil per al calibratge del motor i la validació del CFD. A més, per a la caracterització de la ROM, es va desenvolupar la metodologia de la tècnica de deformació plàstica per a obtindre l'orientació del con de l'esprai i orientar adequadament els dolls de combustible per al mesurament de ROM. En l'anàlisi hidràulica es van combinar les dades per a estudiar els baixos valors del coeficient de descàrrega i del coeficient d'àr / [EN] Fuel injection is among the engine research topics one of the critical pieces to obtain an efficient engine. The role is even more significant when a direct injection strategy is pursued. The internal geometry and pintle movement determine the injector flow behavior, which is known to hugely affect the external spray development and, ultimately, the combustion performance inside the chamber. Climate change and pollutants awareness has been growing, pushing forward the effort on cleaner engines. In this regard, gasoline en- gines have a wider margin to improve than diesel engines. The evolution from old Port Fuel Injectors to modern direct injection strategies, which are used in new generation engines, demonstrates this trend. GDI systems have the potential to comply with stringent emissions and increase fuel economy, however, it still faces many challenges. This work involves the use of two injectors, one is a modern research GDI nozzle appointed by the Engine Combustion Network (ECN), and the other is a production injector unit (PIU) with the same technology and slightly different geometry. Both hardware's undergo a complete characterization (internal and external flow) covering the state- of-the-art techniques in various experimental facilities. Furthermore, a new facility is designed and built to perform experiments under flash boiling conditions (when the fuel injected's vapor pressure is higher than the pressure in the discharge volume). The developed facility is designed to simulate a discharge ambient at certain engine conditions in which flash boiling phenomena could occur. Thus, due to typical gasoline fuel properties, it was a requirement to operate from chamber pressures from 0.2 bar to 15 bar. Also, the ambient temperature was controlled by implementing a resistor that can heat the ambient gas. The facility operates in an open loop, being able to renovate the gas volume between injections. Finally, three wide optical accesses were built to accommodate many optical diagnostic techniques such as DBI, MIE, shadowgraphy, or PDA, among others. For the internal flow description, it was determined the nozzles geometry and holes orientation, the pintle movement, and finally, the characterization of the rate of momentum (ROM) and rate of injection (ROI) of both nozzles. The nozzles geometry and needle lift were measured using advanced optical x-ray techniques at Argonne National Laboratory (ANL). The ROI and ROM measurements were performed using CMT-Motores Térmicos facilities follow- ing the know-how applied in diesel injectors and adapting it to GDI nozzles. The ROI allowed us to compare the nozzles, whose orifices number and geometry were different, although they deliver approximately the same amount of fuel. It was tested their response to typical boundary conditions such as rail pressure, discharge pressure, fuel temperature, etc. For the research nozzle "Spray G", it was developed a 0-D model of the rate of injection allowing to obtain the signal for different injection duration and conditions, which is useful in engine calibration and CFD validation. Furthermore, for the ROM characterization, the plastic deformation technique methodology was developed to obtain spray cone orientation and adequately guide the fuel jets for measuring ROM. The hydraulic analysis combined the data to study the low discharge coefficient and area coefficient values, which could result from low needle lift combined with novel hole designs in both nozzles that promote cavitation and air interaction from inside the orifice. In the external flow characterization, it was used the new developed vessel to study the external spray covering flash boiling conditions. It was employed four surrogate fuels to simulate different volatility properties of gasoline com- pounds and ultimately reproduce more extreme flashing conditions. It was used lateral visualization using DBI and Schlieren in addition to frontal MIE visualization. Some of t / Bautista Rodríguez, A. (2021). Study of the Gasoline Direct Injection Process under Novel Operating Conditions [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/167809
7

RANS and LES of multi-hole sprays for the mixture formation in piston engines

Khan, Muhammad 20 January 2014 (has links) (PDF)
Cette thèse porte sur la simulation des jets de gouttes générés par des pulvérisateurs essence haute pression, pulvérisateurs qui sont un point clef des systèmes de combustion automobile de la présente et future génération devant diminuer les émissions de CO2 et de polluants. Dans un premier temps les jets de gouttes (" sprays ") sont simulés par simulation moyennée. Les résultats de simulation d'un jet donnant des résultats en moyenne satisfaisant, l'interaction de jets en injecteurs multi-trous est alors simulée. Les résultats sont cohérents par rapport aux mesures d'entraînement d'air. La simulation permettant d'avoir accès au champ complet 3D, le mécanisme d'interaction jet à jet et de développement instationnaire du spray est décrit en détail. La formation d'un mouvement descendant au centre du spray et celle d'un point d'arrêt central sont trouvés. Finalement, Ces résultats sont étendus au cas surchauffé, cas où la pression dans la chambre est inférieure à la pression de vapeur saturante. Un modèle simple semi-empirique est proposé pour tenir compte de la modification des conditions proches de la buse d'injection. Le modèle prédit correctement les tendances des variations de paramètres et capture la forme générale du spray qui se referme sur lui-même. La seconde grande partie est consacrée au développement d'un modèle de spray par l'approche des grandes échelles (SGE), limité ici aux cas non évaporant. Il comprend la modélisation de sous-maille de la dispersion turbulente, des collisions-coalescence et des termes d'échange de quantité de mouvement de sous-maille. L'effet du choix du modèle de sous-maille pour la viscosité turbulente de sous-maille est montré, le choix retenu étant le modèle de Smagorinski dynamique. Afin d'améliorer la représentativité cruciale des conditions d'injections, un couplage faible est réalisé à partir de résultats de simulations existantes de l'écoulement interne aux buses. Les fonctions densité de probabilité simple et jointes extraits des résultats de simulations sont validés par rapport aux mesures PDA en situation pseudo-stationnaire et la pénétration liquide et la forme du spray est comparée aux visualisations par ombroscopie. Enfin, différentes zones caractéristiques sont identifiées et des longueurs sont notées pour les cas d'injection à 100 et 200bar.

Page generated in 0.0572 seconds