1 |
Topology and Correlations in Quantum MaterialsVerma, Nishchhal January 2022 (has links)
No description available.
|
2 |
ELECTRON DYNAMICS IN PERIODICALLY STRAINED GRAPHENEMahmud, Md Tareq January 2022 (has links)
No description available.
|
3 |
Topological Properties of Interacting Fermionic SystemsDos Santos, Luiz Henrique Bravo 17 December 2012 (has links)
This thesis is a study of three categories of problems in fermionic systems for which topology plays an important role: (i) The properties of zero modes arising in systems of fermions interacting with a bosonic background, with a special focus on Majorana modes arising in the superconductor state. We propose a method for counting Majorana modes and we study a mechanism for controlling their number parity in lattice systems, two questions that are of relevance to the protection of quantum bits. (ii) The study of dispersionless bands in two dimensions as a platform for correlated physics, where it is shown the possibility of stabilizing the fractional quantum Hall effect in a flat band with Chern number. (iii) The extension of the hierarchy of quantum Hall fluids to the case of time-reversal symmetric incompressible ground states describing a phase of strongly interacting topological insulators in two dimensions. / Physics
|
4 |
Topological properties of flat bands in generalized Kagome lattice materials / Topologiska egenskaper hos platta band i generaliserade Kagome gittermaterialPinto Dias, Daniela January 2021 (has links)
Topological insulators are electronic materials that behave like an ordinary insulator in their bulk but have robust conducting states on their edge. Besides, in some materials the band structure presents completely flat bands, a special feature leading to strong interactions effects. In this thesis we present a study of the edge states of three particular two-dimensional models presenting flat bands: the honeycomb-Kagome, the $\alpha$--graphyne and a ligand decorated honeycomb-Kagome lattice models. We extend earlier work done on these lattice models by focusing on the topological nature of the edge states involving flat bands. We start by giving a review of the band structure theory and the tight-binding approximation. We then present several main topics in two-dimensional topological insulators such as the notion of topological invariants, the Kane-Mele model and the bulk-edge correspondence. Using these theoretical concepts we study the band structure of these lattices firstly without taking into account the spin and spin-orbit interations. We finally add these interactions to get their bulk band structures as well as the edge states. We observe how these spin-orbit interactions relieve degeneracies and allow for the emergence of edge states of topological nature. Since the lattices studied have an arrangement based on the honeycomb-Kagome lattice, two-dimensional materials having the structures of these lattices can be designed assembling metal ions and organic ligands. Therefore the results obtained could be used as a first hint to create new two-dimensional materials presenting topological properties. / Topologiska isolatorer är elektroniska material som uppför sig som en vanlig isolator i sin bulk men har robusta ledande stater på kanten. Dessutom presenterar bandstrukturen i vissa material helt platta band, en speciell egenskap som leder till starka interaktionseffekter. I denna avhandling presenterar vi en studie av kanttillstånden för tre speciella tvådimensionella modeller som presenterar platta band: bikakan-Kagome, $\alpha$-grafynen och en liganddekorerad honungskaka-Kagome modeller. Vi utökar tidigare arbete med dessa gittermodeller genom att fokusera på den topologiska karaktären hos kanttillstånd som innefattar platta band. Vi börjar med att ge en genomgång av bandstruktursteorin och den tätt bindande approximationen. Vi presenterar sedan flera huvudämnen i tvådimensionella topologiska isolatorer såsom begreppet topologiska invarianter, Kane-Mele modellen och bulk-kant korrespondensen. Med hjälp av dessa teoretiska begrepp studerar vi bandstrukturen för dessa gitter först utan att ta hänsyn till spinnen och spinnsorbital interaktioner. Vi lägger sedan till dessa interaktioner för att få sina bulkbandstrukturer såväl som kanttillstånden. Vi observerar hur dessa spinnsorbital interaktioner lindrar degenerationer och möjliggör uppkomsten av kanttillstånd av topologisk naturen. Eftersom de undersökta gitterna har ett arrangemang baserat på honungskaka-Kagome gitteren, kan tvådimensionella material med strukturerna hos dessa gitter utformas genom att montera metalljoner och organiska ligander. Därför kan de erhållna resultaten användas som en första ledtråd för att skapa nya tvådimensionella material med topologiska egenskaper.
|
Page generated in 0.1082 seconds