• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantum Transport in Topological Insulator Nanowires / Kvanttransport i topologiska isolator nanotrådar

Pradas Rodriguez, Sergi January 2023 (has links)
Three-dimensional topological insulators are materials that have a bulk band gap like a traditional insulator, but which hold topologically protected conducting surface states. In this thesis we present a numerical analysis of the surface states of topological insulator nanowires in the tight-binding approximation. We carry out the calculations at zero temperature under the presence of coaxial and perpendicular magnetic fields using Dirac Hamiltonians to model the surface. The results are obtained using Kwant, a Python package first developed in 2014 by Groth et al. for the purpose of aiding in the creation of quantum transport simulations in tight-binding models. The main focus is the self-contained and complete study of the behaviour of the conductance in clean and disordered systems, as well as to serve as an introduction to Kwant. We first study the main properties of quantum transport in mesoscopic systems, and present the scattering problem in the tight-binding approximation, which is the one treated in Kwant. We review the main properties of topological insulators, as well as the history of their discovery. We then present Kwant in detail, and illustrate its inner workings by considering the example of a clean wire. We study clean wires and show the existence of the perfectly transmitted mode under a coaxial magnetic field, obtain the quantisation of the conductance expected from the Laundauer-Büttiker formalism, and recover Fabry-Pérot oscillations when considering highly doped leads. We discuss how disorder can be introduced in our systems to simulate more realistic models, analyse its effects in the period of the conductance oscillations, and recover the robustness to disorder of the perfectly transmitted mode. Finally, we comment on how this thesis can be expanded to cover a wider range of systems and phenomena. / Tredimensionella topologiska isolatorer är material som har ett bulkbandgap som traditionella isolatorer, men som har topologiskt skyddade ledande yttilstånd. I detta arbete presenterar vi en numerisk analys av yttilstånden hos topologiska isolator nanotrådar i tight-binding approximationen vid nolltemperatur, under närvaron av koaxiala och vinkelräta magnetfält med användning av Dirac-Hamiltonians för att modellera ytan. Resultaten erhålls med hjälp av Kwant, ett Python-paket som först utvecklades 2014 av Groth et al. i syfte att underlätta skapandet av simuleringar för kvanttransport i tight-binding modeller. Huvudfokus ligger på en självständig och komplett studie av beteendet hos konduktansen i rena och oordnade system, samt att fungera som en introduktion till Kwant. Vi studerar först de huvudsakliga egenskaperna hos kvanttransport i mesoskopiska system och presenterar spridningsproblemet i tight-binding approximationen, vilket är det som behandlas i Kwant. Dessutom går vi igenom de viktigaste egenskaperna hos topologiska isolatorer, samt deras upptäckthistoria. Sedan pre- senterar vi Kwant i detalj och illustrerar dess inre funktioner genom att titta på en ren tråd. Vi studerar rena trådar och visar förekomsten av det perfekt överförda läget under ett koaxialt magnetfält, erhåller kvantiseringen av den förväntade konduktansen från Laundauer-Büttiker-formalismen och återfår Fabry-Pérot-oscillationer när vi överväger starkt dopade ledare. Sedan diskuterar vi hur oordning kan införas i våra system för att simulera mer realistiska modeller, analysera dess effekter under tiden för oscillationer vid konduktans och återfå robustheten mot oordning av det perfekt överförda läget. Slutligen kommenterar vi hur detta arbete kan utvidgas för att täcka ett bredare spektrum av system och fenomen.
2

Topological properties of flat bands in generalized Kagome lattice materials / Topologiska egenskaper hos platta band i generaliserade Kagome gittermaterial

Pinto Dias, Daniela January 2021 (has links)
Topological insulators are electronic materials that behave like an ordinary insulator in their bulk but have robust conducting states on their edge. Besides, in some materials the band structure presents completely flat bands, a special feature leading to strong interactions effects. In this thesis we present a study of the edge states of three particular two-dimensional models presenting flat bands: the honeycomb-Kagome, the $\alpha$--graphyne and a ligand decorated honeycomb-Kagome lattice models. We extend earlier work done on these lattice models by focusing on the topological nature of the edge states involving flat bands. We start by giving a review of the band structure theory and the tight-binding approximation. We then present several main topics in two-dimensional topological insulators such as the notion of topological invariants, the Kane-Mele model and the bulk-edge correspondence. Using these theoretical concepts we study the band structure of these lattices firstly without taking into account the spin and spin-orbit interations. We finally add these interactions to get their bulk band structures as well as the edge states. We observe how these spin-orbit interactions relieve degeneracies and allow for the emergence of edge states of topological nature. Since the lattices studied have an arrangement based on the honeycomb-Kagome lattice, two-dimensional materials having the structures of these lattices can be designed assembling metal ions and organic ligands. Therefore the results obtained could be used as a first hint to create new two-dimensional materials presenting topological properties. / Topologiska isolatorer är elektroniska material som uppför sig som en vanlig isolator i sin bulk men har robusta ledande stater på kanten. Dessutom presenterar bandstrukturen i vissa material helt platta band, en speciell egenskap som leder till starka interaktionseffekter. I denna avhandling presenterar vi en studie av kanttillstånden för tre speciella tvådimensionella modeller som presenterar platta band: bikakan-Kagome, $\alpha$-grafynen och en liganddekorerad honungskaka-Kagome modeller. Vi utökar tidigare arbete med dessa gittermodeller genom att fokusera på den topologiska karaktären hos kanttillstånd som innefattar platta band. Vi börjar med att ge en genomgång av bandstruktursteorin och den tätt bindande approximationen. Vi presenterar sedan flera huvudämnen i tvådimensionella topologiska isolatorer såsom begreppet topologiska invarianter, Kane-Mele modellen och bulk-kant korrespondensen. Med hjälp av dessa teoretiska begrepp studerar vi bandstrukturen för dessa gitter först utan att ta hänsyn till spinnen och spinnsorbital interaktioner. Vi lägger sedan till dessa interaktioner för att få sina bulkbandstrukturer såväl som kanttillstånden. Vi observerar hur dessa spinnsorbital interaktioner lindrar degenerationer och möjliggör uppkomsten av kanttillstånd av topologisk naturen. Eftersom de undersökta gitterna har ett arrangemang baserat på honungskaka-Kagome gitteren, kan tvådimensionella material med strukturerna hos dessa gitter utformas genom att montera metalljoner och organiska ligander. Därför kan de erhållna resultaten användas som en första ledtråd för att skapa nya tvådimensionella material med topologiska egenskaper.
3

From the quantum Hall effect to topological insulators : A theoretical overview of recent fundamental developments in condensed matter physics

Eriksson, Hjalmar January 2010 (has links)
<p>In this overview I describe the simplest models for the quantum Hall and quantum spin Hall effects, and give some general indications as to the description of topological insulators. As a background to the theoretical models I will first trace the development leading up to the description of topological insulators . Then I will present Laughlin's original model for the quantum Hall effect and briefly discuss its limitations. After that I will describe the Kane and Mele model for the quantum spin Hall effect in graphene and discuss its relation to a general quantum spin Hall system. I will conclude by giving a conceptual description of topological insulators and mention some potential applications of such states.</p>
4

From the quantum Hall effect to topological insulators : A theoretical overview of recent fundamental developments in condensed matter physics

Eriksson, Hjalmar January 2010 (has links)
In this overview I describe the simplest models for the quantum Hall and quantum spin Hall effects, and give some general indications as to the description of topological insulators. As a background to the theoretical models I will first trace the development leading up to the description of topological insulators . Then I will present Laughlin's original model for the quantum Hall effect and briefly discuss its limitations. After that I will describe the Kane and Mele model for the quantum spin Hall effect in graphene and discuss its relation to a general quantum spin Hall system. I will conclude by giving a conceptual description of topological insulators and mention some potential applications of such states.
5

Axion Electrodynamics and Measurable Effects in Topological Insulators / Axion Elektrodynamik och Mätbara Effekter i Topologiska Isolatorer

Asker, Andreas January 2018 (has links)
Topological insulators are materials with their electronic band structure in bulk resembling that of an ordinary insulator, but the surface states are metallic. These surface states are topologically protected, meaning that they are robust against impurities. The topological phenomena of three dimensional topological insulators can be expressed within topological field theories, predicting axion electrodynamics and the topological magnetoelectric effect. An experiment have been suggested to measure the topological phenomena. In this thesis, the underlying theory and details around the experiment are explained and more detailed derivations and expressions are provided.
6

Higher Forms and Dimensional Hierarchy in Topological Condensed Matter / Högre former och dimensionshierarki inom topologisk kondenserad materia

Honarmandi, Yashar January 2022 (has links)
This report discusses higher differential forms with applications in the study of topological phenomena. The integer quantum Hall effect is first discussed, demonstrating a connection between models on a lattice and quantum field theories bridged by a topological invariant, namely the Chern number. Next, for parametrized models on a lattice, the higher Berry curvature is described. This is a rank-(d + 2) differential form on a (d + 2)-dimensional parameter manifold which provides a relation between models in a bulk and on a lower-dimensional interface. Finally, a family of quantum field theories connected to a (d + 1)-dimensional manifold, termed a target space, is constructed. This connection is realized through the incorporation of a set of classical fields, and the effective action of the full field theories all contain a Wess-Zumino-Witten term given by the pullback of a rank-(d + 1) differential form from the target space to spacetime. By performing an extension of spacetime, a (d + 2)-form on a (d + 2)-dimensional target space is constructed in a similar way. Extending a theory in d dimensions thus yields a form on a target space of the same dimension as that of a (d + 1)-dimensional theory without extension, defining a dimensional hierarchy. The dimensional relations inherent in the two higher forms studied indicate the possibility of a relation between them. / Denna rapport beskriver högre ordningens differentialformer med tillämpningar inom topologiska fenomen. Den heltaliga kvantmekaniska Halleffekten beskrivs först, som ett exempel på ett samband mellan modeller på ett gitter och kvantfältteorier som förbindas av topologiska invarianter, specifikt Chern-talet. För parametriserade modeller på ett gitter beskrivs därefter den högre Berrykrökningen. Detta är en differentialform av ordning (d + 2) definierad på en (d + 2)-dimensionell parametermångfald som ger en koppling mellan modeller i en kropps inre och på dens gränsskikt, som är i en lägre dimension. Slutligen konstrueras en familj av kvantfältteorier som är kopplade till en (d + 1)-dimensionell mångfald kallad modellens målrum. Denna koppling realiseras genom introduktionen av ett antal klassiska fält, och den effektiva verkan för den fullständiga teorin innehåller en Wess-Zumino-Witten-term som ges av en tillbakadragen (d + 1)-form från målrummet till rumtiden. Genom att utvidga rumtiden kan även en (d + 2)-form på en (d + 2)-dimensionellt målrum konstrueras på ett motsvarande sätt. Utvidgningen av en teori i d dimensioner ger därmed en differentialform på ett målrum med samma dimension som målrummet för en (d + 1)-dimensionell teori utan utvidning, vilket definierar en dimensionell hierarki. Dimensionsrelationerna inbyggda i dessa två differentialformer indikerar den möjliga existensen av en relation mellan dem.

Page generated in 0.0604 seconds