• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Physique quantique et électrostatique auto-cohérentes / Self-consistent quantum-electrostatics

Armagnat, Pacôme 26 June 2019 (has links)
Dans un système nano-électronique quantique, l'énergie électrostatique représente souvent la plus grand échelle d'énergie. Pourtant, dans les travaux théoriques ou les simulations quantiques, l'environnement électrostatique est tout aussi souvent considérée comme un potentiel externe, ce qui peut conduire à une mauvaise représentation de la physique. Le développement d'outils numériques capables de traiter correctement l'électrostatique et son interaction avec la mécanique quantique est d'une importance capitale pour la compréhension des dispositifs quantiques, pax exemple dans les matériaux semi-conducteurs ou le graphène.Cette thèse est consacrée au problème de la physique quantique et électrostatique autocohérente. Ce problème (également connu sous le nom de Poisson-Schr"odinger") est notoirement difficile dans des situations où la densité des états varie rapidement avec l'énergie. A basse température, ces fluctuations rendent le problème hautement non linéaire, ce qui rend les schémas itératifs profondément instables. Dans cette thèse, nous présentons un algorithme stable qui apporte une solution à ce problème avec une précision contrôlée. La technique est intrinsèquement convergente, y compris dans les régimes très non linéaires. Il fournit ainsi une voie viable pour la modélisation prédictive des propriétés de transport des dispositifs de nanoélectronique quantique.Nous illustrons notre approche par un calcul de la conductance différentielle d'un point de contact quantique.Nous réexaminons également le problème des bandes compressibles et incompressibles dans le régime de l'effet Hall quantique entier. Nos calculs révèlent l'existence d'une nouvelle phase "hybride" pour les champ magnétiques intermédiaires, qui sépare la phase à faible champ des bandes (in)compressibles à champ élevé.Dans une deuxième partie, nous construisons une théorie qui décrit la propagation des excitations collectives (plasmons) qui peuvent être excitées dans des gaz électroniques bidimensionnels. Notre théorie, qui se réduit au liquide de Luttinger en une dimension, peut être directement reliée au problème électrostatique quantique microscopique, ce qui nous permet de faire des prédictions sans aucun paramètre libre. Nous discutons des expériences récemment faites à Grenoble, qui visent à démontrer la faisabilité de bits quantiques volants. Nous constatons que notre théorie concorde quantitativement avec les données expérimentales. / Electrostatic energy is very often the largest energy scale in quantum nanoelectronic systems. Yet, in theoretical work or numerical simulations, the electrostatic landscape is equally often taken for granted as an external potential, which may result in a wrong physical picture. Developing numerical tools that can properly handle the electrostatics and its interplay with quantum mechanics is of utter importance for the understanding of quantum devices in e.g. semi-conducting or graphene like materials.This thesis is devoted to the self-consistent quantum-electrostatic problem. This problem (also known as Poisson-Schr"odinger) is notoriously difficult in situations where the density of states varies rapidly with energy. At low temperatures, these fluctuations make the problem highly non-linear which renders iterative schemes deeply unstable. In this thesis, we present a stable algorithm that provides a solution to this problem with controlled accuracy. The technique is intrinsically convergent including in highly non-linear regimes. Thus, it provides a viable route for the predictive modeling of the transport properties of quantum nanoelectronics devices.We illustrate our approach with a calculation of the differential conductance of a quantum point contact geometry.We also revisit the problem of the compressible and incompressible stripes in the integer quantum Hall regime. Our calculations reveal the existence of a new ”hybrid” phase at intermediate magnetic field that separate the low field phase from the high field stripes.In a second part we construct a theory that describes the propagation of the collective excitations (plasmons) that can be excited in two-dimensional electron gases. Our theory, which reduces to Luttinger liquid in one dimension can be directly connected to the microscopic quantum-electrostatic problem enabling us to make predictions free of any free parameters. We discuss recent experiments made in Grenoble that aim at demonstrating electronic flying quantum bits. We find that our theory agrees quantitatively with the experimental data.
2

Diffusion quantique au-delà des systèmes quasi-unidimensionnels / Quantum scattering beyond quasi one-dimensionnal systems

Istas, Mathieu 19 June 2019 (has links)
Les simulations de nanoélectronique quantique sont souvent restreintes à des géométries où un nanosystème de taille fini est connecté au monde macroscopique via des électrodes unidimensionelles. Cette thèse développe des méthodes numériques pour faire fi de ces restrictions.La première partie présente un algorithme robuste et efficace qui calcule les propriétés d'états liés présents dans des systèmes de liaisons fortes construits avec une région de "scattering" connectée à un nombre indéfini d'électrodes. La formulation de la méthode est faite par analogie à la méthode de continuité des ondes. L'algorithme permet de calculer des états de bord ou de surfaces comme les arcs de Fermi.La deuxième partie est dédiée à une nouvelle méthode numérique, basé sur le formalisme des fonctions de Green, qui permet de simuler efficacement des systèmes infinis en 1, 2 ou 3 directions et quasiment invariants par translation. Comparativement aux approches usuelles où le temps de calcul croît avec la taille du système, cette méthode innovante permet d'accéder directement à la limite thermodynamique. Ces développements fournissent une voie pratique pour la simulation d'échantillons 3D qui était jusqu'à maintenant restée insaisissable.Les deux méthodes sont illustrées par des applications sur des systèmes quantiques (un gaz d'électrons bidimensionel, une structure de graphène...) et des matériaux topologiques (fermions de Majorana, arcs de Fermi sur des semimétaux de Weyl...). La dernière application (résistance des arcs de Fermi au désordre) est la plus aboutie étant donné qu'elle requiert tous les algorithmes présentés dans la thèse. / Simulations in the field of quantum nanoelectronics are often restricted to a quasi one-dimensional geometries where the device is connected to the macroscopic world with one-dimensional electrodes. This thesis presents novel numerical methods that lift many of these restrictions, in particular rendering realistic simulations of three-dimensional systems possible.The first part introduces a robust and efficient algorithm for computing bound states of infinite tight-binding systems that are made up of a scattering region connected to semi-infinite leads. The method is formulated in close nalogy to the wave-matching approach used to compute the scattering matrix. It also allows one to calculate edge or surface states, e.g. the so-called Fermi arcs.The second part is dedicated to a new numerical method, based on the Green's function formalism, that allows to efficiently simulate systems that are infinite in 1, 2 or 3 dimensions and mostly invariant by translation. Compared to established approaches whose computational costs grow with system size and that are therefore plagued by finite size effects, the new method allows one to directly reach the thermodynamic limit. It provides a practical route for simulating 3D setups that have so far remained elusive.Both methods are illustrated by applications to several quantum systems(a disordered two-dimensional electron gas, a graphene device...) and topological materials (Majorana states in 1D superconducting nanowires, Fermi arcs in 3D Weyl semimetals...). The last application (resilience of Fermi arcs to disorder) combines all the algorithms that were introduced in this thesis.
3

Quantum Transport in Topological Insulator Nanowires / Kvanttransport i topologiska isolator nanotrådar

Pradas Rodriguez, Sergi January 2023 (has links)
Three-dimensional topological insulators are materials that have a bulk band gap like a traditional insulator, but which hold topologically protected conducting surface states. In this thesis we present a numerical analysis of the surface states of topological insulator nanowires in the tight-binding approximation. We carry out the calculations at zero temperature under the presence of coaxial and perpendicular magnetic fields using Dirac Hamiltonians to model the surface. The results are obtained using Kwant, a Python package first developed in 2014 by Groth et al. for the purpose of aiding in the creation of quantum transport simulations in tight-binding models. The main focus is the self-contained and complete study of the behaviour of the conductance in clean and disordered systems, as well as to serve as an introduction to Kwant. We first study the main properties of quantum transport in mesoscopic systems, and present the scattering problem in the tight-binding approximation, which is the one treated in Kwant. We review the main properties of topological insulators, as well as the history of their discovery. We then present Kwant in detail, and illustrate its inner workings by considering the example of a clean wire. We study clean wires and show the existence of the perfectly transmitted mode under a coaxial magnetic field, obtain the quantisation of the conductance expected from the Laundauer-Büttiker formalism, and recover Fabry-Pérot oscillations when considering highly doped leads. We discuss how disorder can be introduced in our systems to simulate more realistic models, analyse its effects in the period of the conductance oscillations, and recover the robustness to disorder of the perfectly transmitted mode. Finally, we comment on how this thesis can be expanded to cover a wider range of systems and phenomena. / Tredimensionella topologiska isolatorer är material som har ett bulkbandgap som traditionella isolatorer, men som har topologiskt skyddade ledande yttilstånd. I detta arbete presenterar vi en numerisk analys av yttilstånden hos topologiska isolator nanotrådar i tight-binding approximationen vid nolltemperatur, under närvaron av koaxiala och vinkelräta magnetfält med användning av Dirac-Hamiltonians för att modellera ytan. Resultaten erhålls med hjälp av Kwant, ett Python-paket som först utvecklades 2014 av Groth et al. i syfte att underlätta skapandet av simuleringar för kvanttransport i tight-binding modeller. Huvudfokus ligger på en självständig och komplett studie av beteendet hos konduktansen i rena och oordnade system, samt att fungera som en introduktion till Kwant. Vi studerar först de huvudsakliga egenskaperna hos kvanttransport i mesoskopiska system och presenterar spridningsproblemet i tight-binding approximationen, vilket är det som behandlas i Kwant. Dessutom går vi igenom de viktigaste egenskaperna hos topologiska isolatorer, samt deras upptäckthistoria. Sedan pre- senterar vi Kwant i detalj och illustrerar dess inre funktioner genom att titta på en ren tråd. Vi studerar rena trådar och visar förekomsten av det perfekt överförda läget under ett koaxialt magnetfält, erhåller kvantiseringen av den förväntade konduktansen från Laundauer-Büttiker-formalismen och återfår Fabry-Pérot-oscillationer när vi överväger starkt dopade ledare. Sedan diskuterar vi hur oordning kan införas i våra system för att simulera mer realistiska modeller, analysera dess effekter under tiden för oscillationer vid konduktans och återfå robustheten mot oordning av det perfekt överförda läget. Slutligen kommenterar vi hur detta arbete kan utvidgas för att täcka ett bredare spektrum av system och fenomen.
4

Towards quantum optics experiments with single flying electrons in a solid state system / L'expériences d'optique quantique avec un unique électron volant dans la matière condensée

Bautze, Tobias 19 December 2014 (has links)
Ce travail de thèse porte sur l’étude fondamentale de systèmes nano-électroniques,mesurés à très basse température. Nous avons réalisé des interféromètres électroniques àdeux chemins à partir d’électrons balistiques obtenus dans un gaz 2D d’électrons d’unehétéro-structure GaAs/AlGaAs. Nous montrons que la phase des électrons, et ainsileur état quantique,peut être contrôlée par des grilles électrostatiques. Ces dispositifsse révèlent être des candidats prometteurs pour la réalisation d’un qubit volant. Nousavons développé une simulation numérique évoluée d’un modèle de liaisons fortes à partirde transport quantique ballistique qui décrit toutes les découvertes expérimentales etnous apporte une connaissance approfondie sur les signatures expérimentales de cesdispositifs particuliers. Nous proposons des mesures complémentaires de ce système dequbit volants. Pour atteindre le but ultime, à savoir un qubit volant à un électron unique,nous avons assemblé la source à électron unique précédemment développée dans notreéquipe à un beam splitter électronique. Les électrons sont alors injectés depuis une boîtequantique à un train de boîte quantiques en mouvement. Ce potentiel électrostatique enmouvement est généré par des ondes acoustiques de surface créées par des transducteursinter-digités sur le substrat GaAs piézo-électrique. Nous avons étudié et optimisé chacunde ces composants fondamentaux nécessaires à la réalisation d’un beam splitter à électronunique et développé un procédé local et fiable de fabrication. Ce dispositif nous permet d’étudier les interactions électroniques pour des électrons isolés et pourra servir de basede mesure pour des expériences d’optique quantiques sur un système électronique del’état condensé. Enfin, nous avons développé un outil puissant de simulation du potentielélectrostatique à partir de la géométrie des grilles. Ceci permet d’optimiser la conceptiondes échantillons avant même leur réalisation. Nous proposons ainsi un prototype optimiséde beam splitter à électron unique. / This thesis contains the fundamental study of nano-electronic systems at cryogenictemperatures. We made use of ballistic electrons in a two-dimensional electron gasin a GaAs/AlGaAs heterostructure to form a real two-path electronic interferometerand showed how the phase of the electrons and hence their quantum state can becontrolled by means of electrostatic gates. The device represents a promising candidateof a flying qubit. We developed a sophisticated numerical tight-binding model based onballistic quantum transport, which reproduces all experimental findings and allows togain profound knowledge about the subtle experimental features of this particular device.We proposed further measurements with this flying qubit system. With the ultimate goalof building a single electron flying qubit, we combined the single electron source that hasbeen developed in our lab prior to this manuscript with an electronic beam splitter. Theelectrons are injected from static quantum dots into a train of moving quantum dots.This moving potential landscape is induced in the piezoelectric substrate of GaAs bysurface acoustic waves from interdigial transducers. We studied and optimized all keycomponents, which are necessary to build a single electron beam splitter and built up areliable local fabrication process. The device is capable of studying electron interactionson the single electron level and can serve as a measurement platform for quantum opticsexperiments in electronic solid state systems. Finally, we developed a powerful toolcapable of calculating the potential landscapes of any surface gate geometry, which canbe used as a fast feedback optimization tool for device design and proposed an optimizedprototype for the single electron beam splitter.

Page generated in 0.0446 seconds