• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of Color Ratio Thin Filament Pyrometry Approach for Applications in High Speed Flames

Hagmann, Kai Alexander 07 July 2023 (has links)
Thin filament pyrometry is a proven technique used to measure flame temperature by capturing the spectral radiance produced by the immersion of silicon carbide filaments in a hot gas environment. In this study a commercially available CMOS color camera was used, and the spectral response of each color channel was integrated with respect to the assumed graybody radiation spectrum to form a look up table between color ratio and temperature. Interpolated filament temperatures are then corrected for radiation losses via an energy balance to determine the flame temperature. Verification of the technique was performed on the Holthuis and Associates Flat Flame Burner, formerly known as the Mckenna Burner, and the results are directly compared to literature values measured on a similar burner. The results are also supported by radiation corrected measurements taken using a type B thermocouple on the same burner setup. An error propagation analysis was performed to determine which factors contribute the most to the final measurement uncertainty and confidence intervals are calculated for the results. Uncertainty values for a single point measurement were determined to be between ±15 and ±50 K depending on the color ratio and the total uncertainty associated with day-to-day changes in the measurement setup was found to be ±55 K. / Master of Science / Determination of flame temperature is an important aspect of combustion research and is often critical to the evaluation of combustion systems as well as the integration of those systems into more complex devices. In this thesis the technique of thin filament pyrometry was implemented and verified through the use of a well characterized calibration flame. This technique involves placing thin filaments usually made from silicon carbide into the flame and capturing the spectrum of light they emit with a detector. Since the amount of light emitted as well as which wavelengths the light is concentrated in is a strong function of temperature, this methodology may be used to calculate the temperature of the flame. Thin filament pyrometry has the advantage compared to other techniques in that it is extremely cheap to implement and requires no advanced scientific equipment. The SiC filaments have been shown to have a very high resistance to the flame environment and do not face many of the same challenges that can cause problems for other techniques. A statistical analysis of the method implemented in this work was also performed and the expected uncertainty was similar to many of the alternative techniques which necessitate a more complex or expensive setup.
2

Effects of Moisture on Combustion of Live Wildland Forest Fuels

Pickett, Brent M. 15 July 2008 (has links) (PDF)
Current operational wildland fire models are based on numerous correlations from experiments performed on dry (dead) fuel beds. However, experience has shown distinct differences in burning behaviors between dry and moist (live) fuels. To better understand these fundamental differences, an experiment was designed to use a flat-flame burner to simulate a moving fire front which heated and ignited a stationary, individual fuel sample. Samples included various U.S. species from the California chaparral, the intermountain west, and the southeastern regions. Temperature, mass, and video images were recorded throughout each experimental run from which numerous data values were obtained such as time to ignition, ignition temperature, flame height, time of flame duration, and mass release rates. Qualitative results showed various phenomena such as color change, bubbling, bursting, brand formation, and bending; these phenomena were species-dependent. Quantitative results showed differences in the ignition values (time, temperature, and mass) among species. It was observed that all moisture did not leave the interior of the sample at the time of ignition. Also, from the temperature history profiles, no plateau was observed at 100°C, but instead at 200-300°C. This indicates a need to treat evaporation differently than the classical combustion model. Samples were treated with solvents in attempt to extract the cuticle from the surface. These treated samples were compared to non-treated samples, though no significant combustion characteristics were observed. The time of color change for the treated samples varied significantly, indicating that the cuticle was indeed removed from the surface. Two-leaf configurations were developed and compared to determine combustion interactions between leaves. A second leaf was placed directly above the original leaf. Results showed that the time of flame duration of the upper leaf was significantly affected by the presence of the lower leaf. Causes for the prolonged flame were found to be the consumption of O2 by the lower leaf and the obstruction provided by the lower leaf, creating a wake effect which displaced hot gases from the flat-flame burner as well as entrained surrounding room temperature gas. A semi-physical model based on fluid dynamics and heat and mass transfer was developed that included the observed plateau at 200-300°C, rather than at 100°C; this was done for both the single- and two-leaf configurations. Another model using a statistical approach was produced which described the combustion of a bush that incorporated data obtained from the experimental results. Overall burning times and percentage of fuel consumption were obtained for various fuel loadings using this statistical model.
3

Etude expérimentale et modélisation cinétique de l’oxydation de biocarburants : impact sur les émissions de polluants (carbonylés et hydrocarbures aromatiques polycycliques) / Experimental study and kinetic modeling of the oxidation of biofuels : impact on emissions of pollutants (carbonyl compounds and polycyclic aromatic hydrocarbons)

Shahla, Roya 07 December 2015 (has links)
Le secteur des transports est soumis à des réglementations sévères visant à limiter les émissions polluantes à l’échappement. Les biocarburants ont reçu une attention particulière en tant que carburant de substitution ou additif aux carburants traditionnels dans l’espoir de remédier aux problèmes de l’épuisement des ressources fossiles et des émissions de certains polluants. Cette thèse a pour objectif principal d’étudier l’impact de l’incorporation des biocarburants oxygénés ou synthétiques aux carburants traditionnels sur les émissions de polluants non réglementés à savoir les composés carbonylés (aldéhydes et cétones) et les hydrocarbures aromatiques polycycliques (HAPs) adsorbés sur la suie. Dans un premier temps, une étude a été menée dans une chambre de combustion interne. Les prélèvements des gaz à l’échappement suivis par les analyses chromatographiques en phase liquide ont permis d’évaluer l’effet de l’additivation du carburant sur les émissions de composés carbonylés. Une deuxième étude a été menée au moyen d’un brûleur à flamme plate permettant de collecter des suies de flammes riches dans des conditions stabilisées. Les mesures effectuées ont permis de déterminer l’effet de l’incorporation des biocarburants oxygénés au carburant sur la production de suie et le contenu d’HAPs adsorbés. Ce travail a été complété par l’étude de la cinétique d’oxydation de trois additifs oxygénés à l’état pur en réacteur auto-agité à pression atmosphérique et dans un large domaine de températures (530-1280 K) et de richesses (0,5-4). Les profils de concentration des réactifs, produits et principaux intermédiaires stables ont été obtenus par spectrométrie infrarouge à transformée de Fourrier (IRTF) et chromatographie en phase gazeuse. Ces résultats ont été ensuite confrontés aux profils d’espèces obtenus par simulation, à l’aide des modèles cinétiques d’oxydation disponibles dans la littérature. / The transport sector is subject to strict regulations aiming at limiting pollutants emissions. Biofuels have received particular attention as alternative fuel or additive to traditional fuels for remedying two issues: the depletion of fossil resources and emissions of certain pollutants. In this work we studied the impact of blending conventional fuels with synthetic or oxygenated biofuels on the emissions of non-regulated pollutants, namely carbonyl compounds (aldehydes and ketones) and polycyclic aromatic hydrocarbons (PAHs) adsorbed on soot. Firstly, the carbonyl compounds emissions were studied using an internal combustion engine. The carbonyls were collected at the exhaust of a diesel engine running with biofuel blends and analyzed using high performance liquid chromatography. Secondly, the impact of blending the conventional fuel with oxygenated biofuels on soot formation and adsorbed PAHs were studied using a flat flame burner under well stabilized conditions. This work was completed by the study of the kinetics of oxidation of three oxygenated additives in a jet-stirred reactor at atmospheric pressure, over the temperature range 530-1280 K and for different equivalence ratios (0.5-4). The concentration profiles of reactants, products and main stable intermediates were obtained by probe sampling and gas analyses including Fourier transform infrared spectroscopy (FTIR) and gas phase chromatography. These results were then compared to simulated species concentration profiles obtained using oxidation kinetic models available from the literature.

Page generated in 0.0862 seconds