1 |
Strength and Performance of Steel Fiber Reinforced Concrete Post-Tensioned Flat PlatesRosenthal, Joshua Thomas 06 August 2019 (has links)
Load testing was performed on a one-third scale model steel fiber reinforced concrete post-tensioned flat plate. The specimen had nine 10ft x 10ft x 3in. bays along with a 2ft-6in. overhang. Distributed loading was applied with a whiffle tree loading system at each bay and overhang section. Throughout the test, crack widths, crack locations, deflections, concrete strains, and reinforcing bar strains were monitored. The post-tensioned flat plate was designed to just meet the maximum allowable stress requirements of ACI 318.
Minimal quantities of hairline cracks were observed after stressing the slab, and up through service-level loads, the cracks grew slightly in length and width. The slab behaved elastically through service-level loading. As factored-level loading was approached, the slab began to behave inelastically as indicated by both the load-deflection plots and the load-strain plots. A total ultimate load of 282psf (174psf of applied load) was reached when concrete crushing occurred. A 0.20in. wide full-length crack was observed running on the bottom surface of the slab between column lines 1 and 2, and a full-length crack was observed at column line 2 on the top surface of the slab. These two cracks were the leading contributors to the slab's failure.
The performance of the SFRC post-tensioned flat plate indicated that considerations should be made to remove requirements for negative moment reinforcement in post-tensioned flat plates when SFRC is used. Also, the requirements for positive moment reinforcement should be modified. Additionally, the SFRC post-tensioned flat plate exhibited excellent levels of ductility. More experimentation should be conducted to determine if the maximum tensile stress in ACI 318 can be increased for post-tensioned flat plates with SFRC. / Master of Science / Load testing was performed on a one-third scale model steel fiber reinforced concrete (SFRC) post-tensioned flat plate. Post-tensioned flat plates are a type of concrete structural system typically used as flooring. This system typically employs high-strength steel strands, which are stretched to introduce compression into the concrete, which helps prevent the onset of cracking. The specimen had nine 10ft x 10ft x 3in. bays along with a 2ft-6in. overhang. Distributed loading was applied with a whiffle tree loading system at each bay and overhang section. The whiffle tree loading system was used to allow actuators to spread out the vertical loading on the slab. During the test, crack widths, crack locations, deflections, concrete strains, and reinforcing bar strains were monitored. The post-tensioned flat plate was designed to just meet the maximum allowable stress requirements of the governing standard, ACI 318. Minimal quantities of hairline cracks were observed after stressing the slab, and up through service-level loads, the cracks grew slightly in length and width. As larger loads were applied, the cracks grew and the effects of these cracks on the slab were evidenced in the deflection and strain measurements. A total ultimate load of 282psf (174psf of applied load) was reached when concrete crushing occurred. A 0.20in. wide full-length crack was observed running on the bottom surface of the slab between column lines 1 and 2, and a full-length crack was observed at column line 2 on the top surface of the slab. These two cracks were a driving force in the slab’s failure. The performance of the SFRC post-tensioned flat plate indicated that considerations should be made to change the requirements for negative and positive moment reinforcement in post-tensioned flat plates when SFRC is used. Additionally, the SFRC post-tensioned flat plate exhibited great performance after significant cracking was present. More experimentation should be conducted to determine if the maximum allowable tensile stress in ACI 318 can be increased for post-tensioned flat plates with SFRC.
|
2 |
Deslocamentos transversais em lajes-cogumelo / Flat plate deflectionsSilvany, Tatiana Theophilo 26 November 1996 (has links)
Lajes-cogumelo são sistemas estruturais que apresentam uma série de vantagens em relação aos sistemas convencionais. Por outro lado, com a retirada das vigas, podem surgir problemas como o deslocamento transversal das lajes, a instabilidade global do edifício e a punção da laje pelo pilar. Este trabalho concentra-se no estudo dos deslocamentos transversais das lajes-cogumelo, procurando-se fazer a comparação entre deslocamentos calculados por diferentes processos: o das vigas cruzadas, o de Rangan e o dos elementos finitos. São abordados conceitos básicos para o cálculo desses deslocamentos, o estado de fissuração a ser adotado na determinação da rigidez e os efeitos da fluência e da retração do concreto, que foram baseados no ACI 209R-92. São apresentados três exemplos de aplicação. Com base nos resultados obtidos, verifica-se que os valores dos deslocamentos calculados pelos diferentes processos dependem muito da rigidez considerada, uma vez que é grande a influência do estado de fissuração nos deslocamentos da laje. Nos dois primeiros exemplos, pode-se observar que a diferença de resultados entre o processo de Rangan (que adota um estado padrão de fissuração) e a análise por elementos finitos (considerando a fissuração) é muito variável; os resultados diferem de 1% a 200%. Os resultados obtidos com dois programas de elementos finitos (que consideram a fissuração de formas diferentes) não apresentam diferenças maiores que 14%. / Flat plates are structural systems that present some advantages when compared to slabs with beams. On the other hand, when beams are removed some problems can arise, such as slab deflections, global instability of the building and punching shear. This work deals with the flat plate deflections, comparing computed deflections using different procedures: crossing beam method, Rangan method and finite element method. Basic concepts for the calculation of these deflections, the cracking stage to be adopted in order to determine the stiffness and the effects of concrete creep and shrinkage using the ACI 209R-92 are presented. Three examples are developed. Based on the results, it is noticed that the computed deflections using different procedures depend on the esteemed stiffness, since the influence of cracking stage in the slab deflections is great. In the first two examples, the difference between the results calculated using the Rangan method (which adopts a standard cracking stage) and the finite element method (considering cracking) is very variable; the results differ within a range of 1% to 200%. The results calculated with two finite element program (which consider cracking by different ways) do not present differences greater than 14%.
|
3 |
Otimização de estruturas para acumulação de calor sensívelAndriotty, Tiago Haubert January 2014 (has links)
Este trabalho apresenta a otimização de sistemas de acumulação sensível de energia térmica, submetidos a fontes de energia intermitentes (solar). Este tipo de sistema de acumulação é definido pelo seu material de acumulação e pelo fluido de trabalho, que realiza o transporte da energia. A metodologia empregada consiste em aplicar o modelo da capacitância global para descrever o comportamento dinâmico do material de acumulação, disposto na forma de placas planas paralelas, enquanto que o fluido de trabalho foi modelado via balanço de energia. O material de acumulação foi dividido em diversas seções menores, de modo a satisfazer a condição de validade do modelo da capacitância global, resultando em números de Biot menores ou iguais a 0,1, para cada seção. Os parâmetros identificados para a otimização foram a geometria do material de acumulação (número de placas e volume), propriedades do material de acumulação (massa específica e calor específico) e vazão do fluido de trabalho. Definiu-se a função a ser minimizada como o módulo da diferença entre a taxa de energia de saída do sistema de acumulação e a taxa de energia de saída alvo. Os resultados para duas geometrias e materiais distintos (aço AISI304 e granito), foram comparados com simulações efetuadas com o software comercial COMSOL, e os desvios encontrados ficaram na faixa de 10,16% a 8,88% para o aço e de 1,45% a 0,25% para o granito. A formulação proposta neste trabalho foi implementada no programa Engineering Equation Solver (EES), e otimizada com algoritmos genéticos. Observou-se que a massa específica e o calor específico são parâmetros que podem ser avaliados pelo seu produto (capacidade térmica volumétrica), quando a massa do material de acumulação não foi fixada. Para os casos nos quais a massa foi definida, o calor específico e a massa específica devem ser considerados parâmetros independentes, pois cada um atuou de forma diferente sobre o sistema. Observou-se que aumentando a quantidade de parâmetros de otimização, a diferença entre a taxa de energia na saída e a mesma taxa alvo diminuiu. Na simulação com dois parâmetros de otimização, a diferença relativa máxima entre estas taxas foi de 50%, enquanto que para quatro parâmetros de otimização, este valor caiu para 24%. / This work presents the optimization of sensible heat storage system, subjected to intermittent energy sources (solar). This type of storage system is defined by its storage material and the working fluid, which transports the energy. The methodology consists of using the global capacitance method to describe the dynamic behavior of the storage material, disposed in the form of parallel flat plates, while the working fluid was modeled via an energy balance. The storage material was divided into several smaller sections in order to satisfy the validity condition of the global capacitance model, resulting in Biot numbers smaller or equal than 0.1 for each section. The optimized parameters were the geometry of the storage material (number of plates and volume), the storage material properties (mass and specific heat) and flow rate of the working fluid. The minimized objective function is the difference between the output energy rate of the storage system and the target output energy rate. The results for two different geometries and materials (steel AISI304 and granite), were compared to simulations performed with the commercial software COMSOL, and the deviations were found in the range of 10.16% to 8.88% for steel and 1,45% to 0.25% for granite. The formulation proposed in this paper is implemented in the Engineering Equation Solver (EES), and optimized with genetic algorithm. It was observed that the density and specific heat are parameters that can be evaluated for its product (volumetric heat capacity) when the mass of the storage material was not defined. For the cases where the mass was defined, the specific heat and the density should be considered independent parameters, as each one act differently in the system. It was observed that increasing the number of optimized parameters, the difference between the output energy rate and the same target rate decreased. In the simulation with two optimized parameters, the maximum relative difference between these rates was 50%, while for four optimized parameters, this value dropped to 24%.
|
4 |
Otimização de estruturas para acumulação de calor sensívelAndriotty, Tiago Haubert January 2014 (has links)
Este trabalho apresenta a otimização de sistemas de acumulação sensível de energia térmica, submetidos a fontes de energia intermitentes (solar). Este tipo de sistema de acumulação é definido pelo seu material de acumulação e pelo fluido de trabalho, que realiza o transporte da energia. A metodologia empregada consiste em aplicar o modelo da capacitância global para descrever o comportamento dinâmico do material de acumulação, disposto na forma de placas planas paralelas, enquanto que o fluido de trabalho foi modelado via balanço de energia. O material de acumulação foi dividido em diversas seções menores, de modo a satisfazer a condição de validade do modelo da capacitância global, resultando em números de Biot menores ou iguais a 0,1, para cada seção. Os parâmetros identificados para a otimização foram a geometria do material de acumulação (número de placas e volume), propriedades do material de acumulação (massa específica e calor específico) e vazão do fluido de trabalho. Definiu-se a função a ser minimizada como o módulo da diferença entre a taxa de energia de saída do sistema de acumulação e a taxa de energia de saída alvo. Os resultados para duas geometrias e materiais distintos (aço AISI304 e granito), foram comparados com simulações efetuadas com o software comercial COMSOL, e os desvios encontrados ficaram na faixa de 10,16% a 8,88% para o aço e de 1,45% a 0,25% para o granito. A formulação proposta neste trabalho foi implementada no programa Engineering Equation Solver (EES), e otimizada com algoritmos genéticos. Observou-se que a massa específica e o calor específico são parâmetros que podem ser avaliados pelo seu produto (capacidade térmica volumétrica), quando a massa do material de acumulação não foi fixada. Para os casos nos quais a massa foi definida, o calor específico e a massa específica devem ser considerados parâmetros independentes, pois cada um atuou de forma diferente sobre o sistema. Observou-se que aumentando a quantidade de parâmetros de otimização, a diferença entre a taxa de energia na saída e a mesma taxa alvo diminuiu. Na simulação com dois parâmetros de otimização, a diferença relativa máxima entre estas taxas foi de 50%, enquanto que para quatro parâmetros de otimização, este valor caiu para 24%. / This work presents the optimization of sensible heat storage system, subjected to intermittent energy sources (solar). This type of storage system is defined by its storage material and the working fluid, which transports the energy. The methodology consists of using the global capacitance method to describe the dynamic behavior of the storage material, disposed in the form of parallel flat plates, while the working fluid was modeled via an energy balance. The storage material was divided into several smaller sections in order to satisfy the validity condition of the global capacitance model, resulting in Biot numbers smaller or equal than 0.1 for each section. The optimized parameters were the geometry of the storage material (number of plates and volume), the storage material properties (mass and specific heat) and flow rate of the working fluid. The minimized objective function is the difference between the output energy rate of the storage system and the target output energy rate. The results for two different geometries and materials (steel AISI304 and granite), were compared to simulations performed with the commercial software COMSOL, and the deviations were found in the range of 10.16% to 8.88% for steel and 1,45% to 0.25% for granite. The formulation proposed in this paper is implemented in the Engineering Equation Solver (EES), and optimized with genetic algorithm. It was observed that the density and specific heat are parameters that can be evaluated for its product (volumetric heat capacity) when the mass of the storage material was not defined. For the cases where the mass was defined, the specific heat and the density should be considered independent parameters, as each one act differently in the system. It was observed that increasing the number of optimized parameters, the difference between the output energy rate and the same target rate decreased. In the simulation with two optimized parameters, the maximum relative difference between these rates was 50%, while for four optimized parameters, this value dropped to 24%.
|
5 |
Análise da punção e flechas em lajes maciças sem vigas de concreto armado de acordo com as prescrições da NBR 6118:2003.Ferreira, Antônio Mário 28 October 2005 (has links)
Made available in DSpace on 2016-06-02T20:09:23Z (GMT). No. of bitstreams: 1
DissAMF.pdf: 3489250 bytes, checksum: 818ea4cdfa8e641b78dbdf5307e2a118 (MD5)
Previous issue date: 2005-10-28 / This work shows some NBR 6118:2003 prescriptions, intending to study, analyze and discuss the aspects regarding to the determination of the efforts to check the punch and the detailed framework to struggle it and the deflection (arrow), in the systems of flat plates since they had suffered significant changes. It will be done a comparative analysis of consideration of the non physical linearity presented by structural calculation program CYPECAD to that one done
according to NBR 6118:2003, using a grill analogy through the GPLAN program to do that, as it will be also solved some examples to determine the strain and the framework structure to the punch as to deflection in the flat plates. At last, it will be done a study of case of a building in solid flat plates that presents deflection problems, as well as project failures in the dimension of the flat to punch, which subjects deserve a high attention and concern under the vision and sight of NBR
6118:2003. Specifically it will be dealt the following subjects:
General features of the system;
Methods to determine the strain and dimension to the punch;
Verification of the deflection of the flat;
Utilization of the programs to determine the strain and deflection;
Performance and some examples and a study of the case. / Este trabalho apresenta algumas das prescrições da NBR 6118:2003, com o objetivo de estudar, analisar e discutir aspectos referentes à determinação de esforços para a verificação à punção, detalhamento da armadura para combatê-la e aos deslocamentos verticais (flecha), nos sistemas de lajes-sem-vigas maciças, uma vez que as mesmas sofreram significativas alterações. Será feita uma análise comparativa da consideração da não linearidade física
apresentada pelo programa de cálculo estrutural CYPECAD com a feita de acordo com a NBR 6118:2003, utilizando para isso a analogia de grelha através do programa GPLAN, como também serão resolvidos alguns exemplos tanto para a determinação de esforços e armação de combate à punção como para dos deslocamentos verticais nas lajes-sem-vigas. Finalizando será feito um estudo de caso de um edifício em
lajes-sem-vigas que apresentava problemas de deslocamentos verticais, como também falhas de projeto no dimensionamento das lajes à punção, assuntos esses merecedores de uma maior atenção, preocupação e abrangência aos olhos da
NBR 6118:2003. Especificamente, serão abordados os seguintes assuntos:
características gerais do sistema;
métodos de determinação de esforços e dimensionamento à punção;
verificação de deslocamentos verticais das lajes;
utilização de programas para determinação de esforços e deslocamentos;
realização de alguns exemplos e um estudo de caso.
|
6 |
Deslocamentos transversais em lajes-cogumelo / Flat plate deflectionsTatiana Theophilo Silvany 26 November 1996 (has links)
Lajes-cogumelo são sistemas estruturais que apresentam uma série de vantagens em relação aos sistemas convencionais. Por outro lado, com a retirada das vigas, podem surgir problemas como o deslocamento transversal das lajes, a instabilidade global do edifício e a punção da laje pelo pilar. Este trabalho concentra-se no estudo dos deslocamentos transversais das lajes-cogumelo, procurando-se fazer a comparação entre deslocamentos calculados por diferentes processos: o das vigas cruzadas, o de Rangan e o dos elementos finitos. São abordados conceitos básicos para o cálculo desses deslocamentos, o estado de fissuração a ser adotado na determinação da rigidez e os efeitos da fluência e da retração do concreto, que foram baseados no ACI 209R-92. São apresentados três exemplos de aplicação. Com base nos resultados obtidos, verifica-se que os valores dos deslocamentos calculados pelos diferentes processos dependem muito da rigidez considerada, uma vez que é grande a influência do estado de fissuração nos deslocamentos da laje. Nos dois primeiros exemplos, pode-se observar que a diferença de resultados entre o processo de Rangan (que adota um estado padrão de fissuração) e a análise por elementos finitos (considerando a fissuração) é muito variável; os resultados diferem de 1% a 200%. Os resultados obtidos com dois programas de elementos finitos (que consideram a fissuração de formas diferentes) não apresentam diferenças maiores que 14%. / Flat plates are structural systems that present some advantages when compared to slabs with beams. On the other hand, when beams are removed some problems can arise, such as slab deflections, global instability of the building and punching shear. This work deals with the flat plate deflections, comparing computed deflections using different procedures: crossing beam method, Rangan method and finite element method. Basic concepts for the calculation of these deflections, the cracking stage to be adopted in order to determine the stiffness and the effects of concrete creep and shrinkage using the ACI 209R-92 are presented. Three examples are developed. Based on the results, it is noticed that the computed deflections using different procedures depend on the esteemed stiffness, since the influence of cracking stage in the slab deflections is great. In the first two examples, the difference between the results calculated using the Rangan method (which adopts a standard cracking stage) and the finite element method (considering cracking) is very variable; the results differ within a range of 1% to 200%. The results calculated with two finite element program (which consider cracking by different ways) do not present differences greater than 14%.
|
7 |
Otimização de estruturas para acumulação de calor sensívelAndriotty, Tiago Haubert January 2014 (has links)
Este trabalho apresenta a otimização de sistemas de acumulação sensível de energia térmica, submetidos a fontes de energia intermitentes (solar). Este tipo de sistema de acumulação é definido pelo seu material de acumulação e pelo fluido de trabalho, que realiza o transporte da energia. A metodologia empregada consiste em aplicar o modelo da capacitância global para descrever o comportamento dinâmico do material de acumulação, disposto na forma de placas planas paralelas, enquanto que o fluido de trabalho foi modelado via balanço de energia. O material de acumulação foi dividido em diversas seções menores, de modo a satisfazer a condição de validade do modelo da capacitância global, resultando em números de Biot menores ou iguais a 0,1, para cada seção. Os parâmetros identificados para a otimização foram a geometria do material de acumulação (número de placas e volume), propriedades do material de acumulação (massa específica e calor específico) e vazão do fluido de trabalho. Definiu-se a função a ser minimizada como o módulo da diferença entre a taxa de energia de saída do sistema de acumulação e a taxa de energia de saída alvo. Os resultados para duas geometrias e materiais distintos (aço AISI304 e granito), foram comparados com simulações efetuadas com o software comercial COMSOL, e os desvios encontrados ficaram na faixa de 10,16% a 8,88% para o aço e de 1,45% a 0,25% para o granito. A formulação proposta neste trabalho foi implementada no programa Engineering Equation Solver (EES), e otimizada com algoritmos genéticos. Observou-se que a massa específica e o calor específico são parâmetros que podem ser avaliados pelo seu produto (capacidade térmica volumétrica), quando a massa do material de acumulação não foi fixada. Para os casos nos quais a massa foi definida, o calor específico e a massa específica devem ser considerados parâmetros independentes, pois cada um atuou de forma diferente sobre o sistema. Observou-se que aumentando a quantidade de parâmetros de otimização, a diferença entre a taxa de energia na saída e a mesma taxa alvo diminuiu. Na simulação com dois parâmetros de otimização, a diferença relativa máxima entre estas taxas foi de 50%, enquanto que para quatro parâmetros de otimização, este valor caiu para 24%. / This work presents the optimization of sensible heat storage system, subjected to intermittent energy sources (solar). This type of storage system is defined by its storage material and the working fluid, which transports the energy. The methodology consists of using the global capacitance method to describe the dynamic behavior of the storage material, disposed in the form of parallel flat plates, while the working fluid was modeled via an energy balance. The storage material was divided into several smaller sections in order to satisfy the validity condition of the global capacitance model, resulting in Biot numbers smaller or equal than 0.1 for each section. The optimized parameters were the geometry of the storage material (number of plates and volume), the storage material properties (mass and specific heat) and flow rate of the working fluid. The minimized objective function is the difference between the output energy rate of the storage system and the target output energy rate. The results for two different geometries and materials (steel AISI304 and granite), were compared to simulations performed with the commercial software COMSOL, and the deviations were found in the range of 10.16% to 8.88% for steel and 1,45% to 0.25% for granite. The formulation proposed in this paper is implemented in the Engineering Equation Solver (EES), and optimized with genetic algorithm. It was observed that the density and specific heat are parameters that can be evaluated for its product (volumetric heat capacity) when the mass of the storage material was not defined. For the cases where the mass was defined, the specific heat and the density should be considered independent parameters, as each one act differently in the system. It was observed that increasing the number of optimized parameters, the difference between the output energy rate and the same target rate decreased. In the simulation with two optimized parameters, the maximum relative difference between these rates was 50%, while for four optimized parameters, this value dropped to 24%.
|
8 |
Otimização estrutural de placas compostas laminadas sujeitas a efeitos aeroelásticos / Structural optimization of laminated composite plates subject to aeroelastic effectsDe Leon, Daniel Milbrath January 2011 (has links)
Este trabalho apresenta uma metodologia utilizando técnicas de otimização estrutural para o projeto de placas feitas de material composto laminado sujeitas a interação fluido-estrutura. O procedimento de otimização busca o aumento da velocidade de ut- ter através da maximização das frequências naturais relacionadas aos modos de vibração que estão envolvidos no fenômeno. A analise de estabilidade aero elástica é feita através do método ZONA6 ou método de malha de dipolos, implementado no software ZAERO. O método dos elementos finitos e aplicado para resolver as equações de equilíbrio no modelo estrutural, a sensibilidade dos autovalores com relação as variáveis de projeto é calculada analiticamente e programação linear sequencial é aplicada. A maximização é feita usando dois métodos; o primeiro utiliza uma analise aero elástica para determinar qual modo causa o início de utter, o autovalor associado e então maximizado, na segunda estratégia um método de diferenças finitas é aplicado e as sensibilidades da velocidade de utter com respeito aos autovalores são calculadas, a analise de sensibilidade é usada para guiar o processo de otimização. Por fim, um processo de otimização topológica é aplicado para reduzir a massa das placas em estudo, usando a minimização de volume do material base com a densidade sendo a variável de projeto. / This work presents a structural optimization aided design methodology for composite laminated plates subject to fluid-structure interaction. The goal of the optimization procedure is to increase the flutter speed onset through the maximization of natural frequencies related to the vibration modes involved in the phenomenon. The aeroelastic stability analysis is performed using the ZONA6 method or Doublet mesh method by means of ZAERO software. The finite element method is applied to solve the structural model equilibrium equations, the eigenvalues sensitivities with respect to design variables are calculated analytically, and sequential linear programming is applied. The maximization is accomplished using two methods; the first method uses an aeroelastic analysis to determinate which eigenmode causes the flutter onset, and its eigenvalue is then maximized. In the second method, a forward finite difference method is applied and the flutter speed sensitivities with respect to the eigenvalues are calculated. This sensitivity is used to guide the optimization process. Finally, a topology optimization process is applied to reduce the mass of the plates under study, using the base material volume minimization with density as design variable.
|
9 |
Otimização estrutural de placas compostas laminadas sujeitas a efeitos aeroelásticos / Structural optimization of laminated composite plates subject to aeroelastic effectsDe Leon, Daniel Milbrath January 2011 (has links)
Este trabalho apresenta uma metodologia utilizando técnicas de otimização estrutural para o projeto de placas feitas de material composto laminado sujeitas a interação fluido-estrutura. O procedimento de otimização busca o aumento da velocidade de ut- ter através da maximização das frequências naturais relacionadas aos modos de vibração que estão envolvidos no fenômeno. A analise de estabilidade aero elástica é feita através do método ZONA6 ou método de malha de dipolos, implementado no software ZAERO. O método dos elementos finitos e aplicado para resolver as equações de equilíbrio no modelo estrutural, a sensibilidade dos autovalores com relação as variáveis de projeto é calculada analiticamente e programação linear sequencial é aplicada. A maximização é feita usando dois métodos; o primeiro utiliza uma analise aero elástica para determinar qual modo causa o início de utter, o autovalor associado e então maximizado, na segunda estratégia um método de diferenças finitas é aplicado e as sensibilidades da velocidade de utter com respeito aos autovalores são calculadas, a analise de sensibilidade é usada para guiar o processo de otimização. Por fim, um processo de otimização topológica é aplicado para reduzir a massa das placas em estudo, usando a minimização de volume do material base com a densidade sendo a variável de projeto. / This work presents a structural optimization aided design methodology for composite laminated plates subject to fluid-structure interaction. The goal of the optimization procedure is to increase the flutter speed onset through the maximization of natural frequencies related to the vibration modes involved in the phenomenon. The aeroelastic stability analysis is performed using the ZONA6 method or Doublet mesh method by means of ZAERO software. The finite element method is applied to solve the structural model equilibrium equations, the eigenvalues sensitivities with respect to design variables are calculated analytically, and sequential linear programming is applied. The maximization is accomplished using two methods; the first method uses an aeroelastic analysis to determinate which eigenmode causes the flutter onset, and its eigenvalue is then maximized. In the second method, a forward finite difference method is applied and the flutter speed sensitivities with respect to the eigenvalues are calculated. This sensitivity is used to guide the optimization process. Finally, a topology optimization process is applied to reduce the mass of the plates under study, using the base material volume minimization with density as design variable.
|
10 |
Otimização estrutural de placas compostas laminadas sujeitas a efeitos aeroelásticos / Structural optimization of laminated composite plates subject to aeroelastic effectsDe Leon, Daniel Milbrath January 2011 (has links)
Este trabalho apresenta uma metodologia utilizando técnicas de otimização estrutural para o projeto de placas feitas de material composto laminado sujeitas a interação fluido-estrutura. O procedimento de otimização busca o aumento da velocidade de ut- ter através da maximização das frequências naturais relacionadas aos modos de vibração que estão envolvidos no fenômeno. A analise de estabilidade aero elástica é feita através do método ZONA6 ou método de malha de dipolos, implementado no software ZAERO. O método dos elementos finitos e aplicado para resolver as equações de equilíbrio no modelo estrutural, a sensibilidade dos autovalores com relação as variáveis de projeto é calculada analiticamente e programação linear sequencial é aplicada. A maximização é feita usando dois métodos; o primeiro utiliza uma analise aero elástica para determinar qual modo causa o início de utter, o autovalor associado e então maximizado, na segunda estratégia um método de diferenças finitas é aplicado e as sensibilidades da velocidade de utter com respeito aos autovalores são calculadas, a analise de sensibilidade é usada para guiar o processo de otimização. Por fim, um processo de otimização topológica é aplicado para reduzir a massa das placas em estudo, usando a minimização de volume do material base com a densidade sendo a variável de projeto. / This work presents a structural optimization aided design methodology for composite laminated plates subject to fluid-structure interaction. The goal of the optimization procedure is to increase the flutter speed onset through the maximization of natural frequencies related to the vibration modes involved in the phenomenon. The aeroelastic stability analysis is performed using the ZONA6 method or Doublet mesh method by means of ZAERO software. The finite element method is applied to solve the structural model equilibrium equations, the eigenvalues sensitivities with respect to design variables are calculated analytically, and sequential linear programming is applied. The maximization is accomplished using two methods; the first method uses an aeroelastic analysis to determinate which eigenmode causes the flutter onset, and its eigenvalue is then maximized. In the second method, a forward finite difference method is applied and the flutter speed sensitivities with respect to the eigenvalues are calculated. This sensitivity is used to guide the optimization process. Finally, a topology optimization process is applied to reduce the mass of the plates under study, using the base material volume minimization with density as design variable.
|
Page generated in 0.0792 seconds