Spelling suggestions: "subject:"flemingia process"" "subject:"flemingeri process""
1 |
Probabilistic methods for multiscale evolutionary dynamicsLuo, Shishi Zhige January 2013 (has links)
<p>Evolution by natural selection can occur at multiple biological scales. This is particularly the case for host-pathogen systems, where selection occurs both within each infected host as well as through transmission between hosts. Despite there being established mathematical models for understanding evolution at a single biological scale, fewer tractable models exist for multiscale evolutionary dynamics. Here I present mathematical approaches using tools from probability and stochastic processes as well as dynamical systems to handle multiscale evolutionary systems. The first problem I address concerns the antigenic evolution of influenza. Using a combination of ordinary differential equations and inhomogeneous Poisson processes, I study how immune selection pressures at the within-host level impact population-level evolutionary dynamics. The second problem involves the more general question of evolutionary dynamics when selection occurs antagonistically at two biological scales. In addition to host-pathogen systems, such situations arise naturally in the evolution of traits such as the production of a public good and the use of a common resource. I introduce a model for this general phenomenon that is intuitively visualized as a a stochastic ball-and-urn system and can be used to systematically obtain general properties of antagonistic multiscale evolution. Lastly, this ball-and-urn framework is in itself an interesting mathematical object which can studied as either a measure-valued process or an interacting particle system. In this mathematical context, I show that under different scalings, the measure-valued process can have either a propagation of chaos or Fleming-Viot limit.</p> / Dissertation
|
2 |
Processus de Fleming-Viot, distributions quasi-stationnaires et marches aléatoires en interaction de type champ moyen / Fleming-Viot process, quasi-stationary distributions and random walks in mean field type interactionThai, Anh-Thi Marie Noémie 27 November 2015 (has links)
Dans cette thèse nous étudions le comportement asymptotique de systèmes de particules en interaction de type champ moyen en espace discret, systèmes pour lesquels l'interaction a lieu par l'intermédiaire de la mesure empirique. Dans la première partie de ce mémoire, nous nous intéressons aux systèmes de particules de type Fleming-Viot: les particules se déplacent indépendamment suivant une dynamique markovienne jusqu'au moment où l'une d'entre elles touche un état absorbant. A cet instant, la particule absorbée choisit uniformément une autre particule et saute sur sa position. L'ergodicité du processus est établie dans le cadre de marches aléatoires sur N avec dérive vers l'origine et pour une dynamique proche de celle du graphe complet. Pour ce dernier, nous obtenons une estimation quantitative de la convergence en temps long à l'aide de la courbure de Wasserstein. Nous montrons de plus la convergence de la distribution empirique stationnaire vers une unique distribution quasi-stationnaire, quand le nombre de particules tend vers l'infini. Dans la deuxième partie de ce mémoire, nous nous intéressons au comportement en temps long et quand le nombre de particules devient grand, d'un système de processus de naissance et mort pour lequel les particules interagissent à chaque instant par le biais de la moyenne de leurs positions. Nous établissons l'existence d'une limite macroscopique, solution d'une équation non linéaire ainsi que le phénomène de propagation du chaos avec une estimation quantitative et uniforme en temps / In this thesis we study the asymptotic behavior of particle systems in mean field type interaction in discrete space, where the system acts over one fixed particle through the empirical measure of the system. In the first part of this thesis, we are interested in Fleming-Viot particle systems: the particles move independently of each other until one of them reaches an absorbing state. At this time, the absorbed particle jumps instantly to the position of one of the other particles, chosen uniformly at random. The ergodicity of the process is established in the case of random walks on N with a dirft towards the origin and on complete graph dynamics. For the latter, we obtain a quantitative estimate of the convergence described by the Wasserstein curvature. Moreover, under the invariant measure, we show the convergence of the empirical measure towards the unique quasi-stationary distribution as the size of the system tends to infinity. In the second part of this thesis, we study the behavior in large time and when the number of particles is large of a system of birth and death processes where at each time a particle interacts with the others through the mean of theirs positions. We establish the existence of a macroscopic limit, solution of a non linear equation and the propagation of chaos phenomenon with quantitative and uniform in time estimate
|
Page generated in 0.0826 seconds