• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Techniques for Multilingual Document Retrieval for Open-Domain Question Answering : Using hard negatives filtering, binary retrieval and data augmentation / Tekniker för flerspråkig dokumenthämtning för OpenQA : Använder hård negativ filtrering, binär sökning och dataförstärkning

Lago Solas, Carlos January 2022 (has links)
Open Domain Question Answering (OpenQA) systems find an answer to a question from a large collection of unstructured documents. In this information era, we have an immense amount of data at our disposal. However, filtering all the content and trying to find the answers to our questions can be too time-consuming and ffdiicult. In addition, in such a globalised world, the information we look for to answer a question may be in a different language. Current research is focused on improving monolingual (English) OpenQA performance. This creates a disparity between the tools accessible between English and non-English speakers. The techniques explored in this study involve the combination of different methods, such as data augmentation and hard negative filtering for performance increase, and binary embeddings for improving the efficiency, with multilingual Transformers. The downstream performance is evaluated using sentiment multilingual datasets covering Cross-Lingual Transfer (XLT), question and answer in the same language, and Generalised Cross-Lingual Transfer (G-XLT), different languages for question and answer. The results show that data augmentation increased Recall by 37.0% and Mean Average Precision (MAP) by 67.0% using languages absent from the test set for XLT. Combining binary embeddings and hard negatives can reduce inference time and index size to 12.5% and 3.1% of the original, retaining 97.1% of the original Recall and 94.8% of MAP (averages of XLT and MAP). / Open Domain Question Answering (OpenQA)-system hittar svar på frågor till stora samlingar av ostrukturerade dokument. I denna informationsepok har vi en enorm mängd kunskap till vårt förfogande. Att filtrera allt innehåll för att försöka att hitta svar på våra frågor kan dock vara mycket tidskrävande och svårt. I en globaliserad värld kan informationen vi söker för att besvara en fråga dessutom vara på ett annat språk. Nuvarande forskning är primärt inriktad på att förbättra OpenQA:s enspråkiga (engelska) prestanda. Detta skapar ett gap mellan de verktyg som är tillgängliga för engelsktalande och icke-engelsktalande personer. De tekniker som undersöks i den här studien innebär en kombination av olika metoder, t.ex. dataförstärkning och hård negativ filtrering för att öka prestandan, och binära embeddings för att förbättra effektiviteten med flerspråkiga Transformatorer. Prestandan nedströms utvärderas med hjälp av flerspråkiga dataset som omfattar Cross-Lingual Transfer (XLT), fråga och svar på samma språk, och Generalised Cross-Lingual Transfer (G-XLT), olika språk för fråga och svar. Resultaten visar att dataförstärkning ökade recall med 37.0% och 67.0% för Mean Average Precision (MAP) med hjälp av språk som inte fanns med i testuppsättningen för XLT. Genom att kombinera binära embeddings och hårda negationer kan man minska tiden för inferens och indexstorleken till 12.5% och 3.1% av originalet, samtidigt som man behåller 97.1% av ursprunglig recall samt 94.8% av MAP (medelvärden av XLT och MAP).
2

Distilling Multilingual Transformer Models for Efficient Document Retrieval : Distilling multi-Transformer models with distillation losses involving multi-Transformer interactions / Destillering av flerspråkiga transformatormodeller för effektiv dokumentsökning : Destillering av modeller med flera transformatorer med destilleringsförluster som involverar interaktioner mellan flera transformatorer

Liu, Xuecong January 2022 (has links)
Open Domain Question Answering (OpenQA) is a task concerning automatically finding answers to a query from a given set of documents. Language-agnostic OpenQA is an increasingly important research area in the globalised world, where the answers can be in a different language from the question. An OpenQA system generally consists of a document retriever to retrieve relevant passages and a reader to extract answers from the passages. Large Transformers, such as Dense Passage Retrieval (DPR) models, have achieved state-of-the-art performances in document retrievals, but they are computationally expensive in production. Knowledge Distillation (KD) is an effective way to reduce the size and increase the speed of Transformers while retaining their performances. However, most existing research focuses on distilling single Transformer models, instead of multi-Transformer models, as in the case of DPR. This thesis project uses MiniLM and DistilBERT distillation methods, two of the most successful methods to distil the BERT model, to individually distil the passage and query model of a fined-tuned DPR model comprised of two pretrained MPNet models. In addition, the project proposes and tests Embedding Similarity Loss (ESL), a distillation loss designed for the interaction between the passage and query models in DPR architecture. The results show that using ESL results in better students than using MiniLM or DistilBERT loss alone and that combining ESL with any of the other two losses increases their student models’ performances in most cases, especially when training on Information-Seeking Question Answering in Typologically Diverse Languages (TyDi QA) instead of The Stanford Question Answering Dataset 1.1 (SQuAD 1.1). The best resulting 6-layer student DPR model retained more than 90% of the recall and Mean Average Precision (MAP) in Cross-Lingual Transfer (XLT) tasks while reducing the inference time to 63.2%. In Generalised Cross-Lingual Transfer (G-XLT) tasks, it retained only around 42% of the recall and MAP using 53.8% of the inference time. / Domänlöst frågebesvarande är en uppgift som handlar om att automatiskt hitta svar på en fråga från en given uppsättning av dokument. Språkagnostiska domänlöst frågebesvarande är ett allt viktigare forskningsområde i den globaliserade världen, där svaren kan vara på ett annat språk än själva frågan. Ett domänlöst frågebesvarande-system består i allmänhet av en dokumenthämtare som plockar relevanta textavsnitt och en läsare som extraherar svaren från dessa textavsnitt. Stora transformatorer, såsom DPR-modeller (Dense Passage Retrieval), har uppnått toppresultat i dokumenthämtning, men de är beräkningsmässigt dyra i produktion. KD (Knowledge Distillation) är ett effektivt sätt att minska storleken och öka hastigheten hos transformatorer samtidigt som deras prestanda bibehålls. För det mesta är den existerande forskningen dock inriktad på att destillera enstaka transformatormodeller i stället för modeller med flera transformatorer, som i fallet med DPR. I det här examensarbetet används MiniLM- och DistilBERT-destilleringsmetoderna, två av de mest framgångsrika metoderna för att destillera BERT-modellen, för att individuellt destillera text- och frågemodellen i en finjusterad DPRmodell som består av två förinlärda MPNet-modeller. Dessutom föreslås och testas ESL (Embedding Similarity Loss), en destilleringsförlust som är utformad för interaktionen mellan text- och frågemodellerna i DPRarkitekturen. Resultaten visar att användning av ESL resulterar i bättre studenter än om man enbart använder MiniLM eller DistilBERT-förlusten och att kombinationen ESL med någon av de andra två förlusterna ökar deras studentmodellers prestanda i de flesta fall, särskilt när man tränar på TyDi QA (Typologically Diverse Languages) istället för SQuAD 1.1 (The Stanford Question Answering Dataset). Den bästa resulterande 6-lagriga student DPRmodellen behöll mer än 90% av återkallandet och MAP (Mean Average Precision) för XLT-uppgifterna (Cross-Lingual Transfer) samtidigt som tiden för inferens minskades till 63.2%. För G-XLT-uppgifterna (Generalised CrossLingual Transfer) bibehölls endast cirka 42% av återkallelsen och MAP med 53.8% av inferenstiden.

Page generated in 0.1123 seconds