• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Approche du bruit magnétomécanique, application au suivi de la fatigue en flexion rotative

SOULTAN, Malloum 06 December 2002 (has links) (PDF)
Le bruit magnétomécanique correspond à la réorganisation de la microstructure magnétique d'un matériau ferromagnétique sous l'effet d'une contrainte. Ce phénomène est dû à la mobilité des parois de Bloch à 90°.<br />Différents états métallurgiques d'un fer à 0,1% C (recuit, trempe, revenus) ont été caractérisés, les résultats ont été comparés à ceux des méthodes Barkhausen et PTE.<br />Un dispositif d'essai en fatigue en flexion rotative avec mesure in situ du bruit magnétomécanique a été réalisé. Le fer Armco a été étudié sous différentes charges, les résultats interprétés en termes d'interaction microstructure cristalline, microstructure magnétique et phénomène de traînage magnétique. L'identification du début de l'endommagement s'inscrit dans l'évaluation «du potentiel restant ». <br />Une modélisation à une dimension traduisant l'équilibre énergétique d'une paroi de Bloch à 90° soumise à une contrainte est proposée.<br />Cette étude préliminaire se situe à l'interface entre le micromagnétisme, le contrôle non destructif et le frottement intérieur.
2

Etude de l'influence de l'intégrité de surface en tournage de l'acier 15-5PH sur la tenue en fatigue en flexion rotative / Study of surface integrity influence in turning of 15-5PH on the rotating bending fatigue life

Chomienne, Vincent 13 November 2014 (has links)
Ce mémoire présente une méthode visant à mettre en évidence l’influence de l’intégrité de surface obtenue en tournage, sur la fatigue de l’acier 15-5PH. Le travail réalisé consiste à développer des moyens d’obtention de surfaces à intégrités maitrisées, puis à réaliser des essais de fatigue pour observer l’influence des paramètres d’intégrité. Les procédés de tournage et de galetage sont utilisés pour obtenir des lots d’éprouvettes possédant différentes intégrités de surfaces. Ces éprouvettes sont ensuite toutes caractérisées, en rugosité et contraintes résiduelles, de manières non destructives. Certaines éprouvettes font l’objet d’analyses complémentaires pour caractériser l’état de la matière sous la surface. Ces analyses permettent de constituer des lots d’éprouvettes possédant des caractéristiques de surfaces très proches. Toutefois, il a été mis en évidence une très grande sensibilité de l’intégrité de surface générée, vis-à-vis du diamètre de la pièce usinée, ce qui se traduit par une dispersion importante des intégrités de surface obtenues. Les lots constitués sont ensuite testés en fatigue sur une machine de flexion rotative (R = -1) selon la méthode Staircase. Cette méthode permet de déterminer la limite d’endurance avec 50 % de probabilité de rupture pour un nombre de cycles donné. Les résultats sont ensuite confrontés aux intégrités de surface des lots pour déterminer les caractéristiques les plus influentes. Une comparaison des données expérimentales est réalisée avec les modèles de la littérature. Il est montré que ces modèles ne parviennent pas à décrire de manière satisfaisante le comportement en fatigue vis à vis de la rugosité ou du niveau de contraintes résiduelles. L’analyse de ces résultats montre que le profil de contraintes résiduelles, dans le cas du 15-5PH, est la caractéristique la plus influente sur la tenue en fatigue. La rugosité n’apparait pas comme un facteur d’influence notable, à l’exception des cas où les contraintes résiduelles ont un niveau très faible. Des pistes d’améliorations sont enfin suggérées pour améliorer la prise en compte de l’intégrité de surface dans le cadre d’un dimensionnement en fatigue. / This thesis aims to show a method to highlight the influence of surface integrity obtained by turning on the fatigue of a 15-5PH steel. Several ways are developped to obtain desired surface integrities, then fatigue test are performed to observe the influence of surface integrity parameters'. Turning and ball burnishing were used to achieve specimens with differents surface integrities. Theses samples are then fully characterized in term of surface roughness and residual stresses, in a non-destructive way. Some specimens are subject to further analysis to characterize the state of the material under the surfaece. These analyses are used to create batches of specimens with very close surfaces characteristics. However, it has been shown a high sensitivity of the generated surface integrity, with respect to the workpiece diameter, which result in a significant dispersion of surface integrities obtained. Batches are then tested on a rotating bending test machine (Stress ration R=-1) thanks to the Staircase method, in order to determine the fatigue limit at two billion cycle with a 50% failure probability. The results are then compared with the surface integrities in order to determine the most influencial parameter. A comparison of the experimental datas with models in the literature is performed. It is shown that models are unable to describe the fatigue behavior with respect to the roughness or the residual stress state. The results analysis shows that residual stresses profile, in the case of 15-5PH steel, is the most influencial parameter on the fatigue life. Roughness does not appears as a factor of major influence, except in cases where residual stresses have a very low level. Prospects for improvement are finaly suggested in order to improve the consideration of surface integrity during the fatigue design of parts.
3

Étude des microstructures de déformation induites par grenaillage ultrasonique en conditions cryogéniques d'aciers inoxydables austénitiques : effet sur les propriétés en fatigue / Study of the deformed microstructures induced by ultrasonic shot peening under cryogenic conditions on austenitic stainless steels : effect on fatigue properties

Novelli, Marc 16 November 2017 (has links)
La surface des pièces mécaniques est une zone sensible soumise à des conditions de sollicitations particulières, tant mécaniquement (frottement, contrainte maximale) que chimiquement (atmosphère ambiante, corrosion). Ainsi, la ruine des pièces de service est généralement initiée en surface ; les grands secteurs industriels sont donc à la recherche de solutions technologiques permettant une amélioration des propriétés mécaniques globales par une modification des propriétés de surface. De nombreuses techniques ont été développées dans ce but, notamment les traitements de surface mécaniques. Parmi ceux-ci, le grenaillage ultrasonique permet de déformer sévèrement et superficiellement les pièces par de nombreux impacts de billes ayant des trajectoires aléatoires au sein de la chambre de traitement. Le propos de cette étude repose sur l'analyse et la compréhension des microstructures de déformation induites par un traitement de grenaillage ultrasonique, particulièrement sous conditions cryogéniques ; sujet très peu exploré à ce jour voir nouveau concernant i) des métaux susceptibles de subir une transformation martensitique et ii) l'influence d'un tel traitement sur la tenue en fatigue cyclique. Pour ce faire, plusieurs nuances d'aciers inoxydables austénitiques présentant des stabilités différentes vis-à-vis de la transformation de phase ont été traitées à très basses températures et les propriétés obtenues ont été comparées à celles mesurées sur les échantillons traités à température ambiante. Les premières observations ont montré que, suite à un traitement sous condition cryogénique (-130 °C), une baisse de dureté intervient en sous-couche de l'alliage 310S stable, associée à une hausse des propriétés mécaniques sous basse température rendant le matériau plus difficile à écrouir. Ce phénomène est complètement supprimé au sein de l'alliage métastable 304L par une transformation martensitique facilitée, intervenant plus profondément qu'à température ambiante et entrainant une augmentation de la dureté de sous-couche. Deux alliages métastables (304L et 316L) ont donc été sélectionnés afin de détailler l'influence des paramètres de traitement sur le durcissement de sous-couche par une étude paramétrique comprenant l'amplitude de vibration (40 et 60 µm), la durée (3 et 20 min) ainsi que la température de traitement (ambiante, -80 et -130 °C). Il en ressort qu'augmenter l'énergie de traitent par une hausse de l'amplitude et/ou de la durée de grenaillage entraine une augmentation des duretés de surface et de sous-couche, accompagnée par la production de couches durcies plus épaisses. L'utilisation de températures cryogéniques permet une augmentation du potentiel de durcissement, et ce principalement en sous-couche. En associant les gradients de dureté aux distributions de martensite le long des épaisseurs affectées, il a été montré que la fraction de martensite était directement liée au potentielle de durcissement en profondeur. La fraction de martensite produite étant dépendante de la température de déformation et, afin de prendre en compte la stabilité initiale de l'alliage comme paramètre additionnel, des mesures complémentaires ont été faites sur l'alliage 316L plus stable. Les résultats ont alors montré qu'il est primordial d'adapter la température de traitement à la stabilité de l'échantillon afin d'optimiser l'efficacité du durcissement de sous-couche et éviter ainsi une baisse de la dureté en profondeur. Finalement, les structures de déformation obtenues sous condition cryogénique ont été reliées à la tenue mécanique sous sollicitations cycliques en flexion rotative. Comparé à un traitement réalisé à température ambiante, un grenaillage cryogénique permet une baisse la rugosité de surface et la production de contraintes résiduelles de compression plus élevées par la présence de martensite. Cependant, une plus grande relaxation de ces dernières associée à une réduction de l'épaisseur [...] / The surface of mechanical components is a sensitive zone subjected to particular mechanical (friction, maximum stress) and chemical (ambient atmosphere, corrosion) interactions. Hence, the rupture is generally initiated on the surface. In order to increase the global integrity of the working parts, the industrial groups are still seeking technological solutions allowing the modifications of the surface properties. Nodaway, plenty of surface modification techniques have been developed like the mechanical surface treatments. Among them, the ultrasonic shot peening (or surface mechanical attrition treatment) focus on superficially deform the mechanical parts through numerous collisions of peening medias having random trajectories inside a confined chamber. The purpose of this study is based on the analysis and the comprehension of the deformed microstructures induced by the ultrasonic shot peening treatment, especially under cryogenic temperatures. To do so, several austenitic stainless steel grades having different stabilities regarding the martensitic transformation have been treated under cryogenic conditions and compared to the properties obtained under room temperature. The first observations have shown that, after a cryogenic peening, a decrease of the subsurface hardness takes place in the stable 310S alloy which was attributed to an increase of the mechanical properties under cryogenic temperature. This phenomenon is suppressed in the metastable 304L by triggering a martensitic phase transformation promoted under low temperature and happening deeper compared to room temperature, increasing substantially the subsurface hardness. Two metastable alloys (304L and 316L) were then selected to conduct an ultrasonic shot peening parametric study including the vibration amplitude (40 and 60 µm), the treatment duration (3 and 20 min) and temperature (room temperature, -80 and -130 °C). It has been shown that increasing the treatment energy by raising the vibration amplitude and/or the duration leads to an increase of the surface and subsurface hardnesses as well as the affected layer thickness. The use of cryogenic temperatures allows an additional increase of the hardness, especially in subsurface. By comparing the different hardness gradients with the martensite distributions along the hardened layers, a direct correlation with the hardening rate and the martensite fraction was observed. The initial stability of the treated material was also taken in account by carried out additional observations on the 316L having a higher stability. The results have indicated that the deformation temperature needs to be wisely chosen regarding the stability of the processed material in order to avoid a decrease of the subsurface hardness. Finally, the deformed microstructures generated under cryogenic ultrasonic shot peening were associated to the mechanical behaviors of cylindrical specimens using rotating bending fatigue tests. Compared to a room temperature treatment, a cryogenic peening allows a decrease of the surface roughness and the generation of higher surface compressive residual stresses by the formation of martensite. However, compared to a room temperature treatment, the fatigue behavior was not increased after a cryogenic peening because of a more pronounced surface residual stress relaxation and a reduction of the affected layer. However, the potential increase of the fatigue life after a cryogenic surface deformation was depicted by the study of the rupture surfaces. It was observed that, if the involvement of the surface defects introduced by the high surface roughness can be lowered, a single subsurface crack initiation can be produced increasing considerably the fatigue behavior of the processed material

Page generated in 0.0881 seconds