• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Biogeography of Marbled Godwit (Limosa fedoa) Populations in North America

Olson, Bridget E. 01 December 2011 (has links)
We equipped 28 Marbled Godwit from four locations in North America with miniature satellite transmitters to determine migration routes, strategy, and connectivity. Godwits captured in Utah (n = 13) went to breeding sites in Alberta, Saskatchewan, Montana and North Dakota and wintered along the Baja Peninsula and west coast of mainland Mexico. They used Bear River Migratory Bird Refuge (BRMBR), Utah as a stopover during both north and southbound migration. Godwits captured on Akimiski Island, Nunavut, Canada (n = 7) migrated through the midcontinent USA and wintered at sites along the Gulf of California, Sonora, Mexico. There is overlap in use of Mexico winter and stopover areas between the birds from Akimiski Island and those captured in Utah. Godwits captured in Georgia on the Atlantic coast (n = 6) migrated to breeding grounds in North and South Dakota. Godwits wintering along the Atlantic coast breed in close proximity to those originating from Mexico wintering sites and using BRMBR as a stopover. Godwits tagged on Akimiski Island traveled significantly farther during southbound migration (3862 km) than did godwits tagged in Utah (2533 km) and Georgia (2204 km) (P < 0.001). Godwits tagged in Utah traveled the shortest distance to the first stopover during southbound migration (670 km) (P < 0.001). This short distance between stopovers is characteristic of a “hopping” migration strategy, which is different than the intermediate “skipping” distances traveled by godwits from Canada (1925 km) and Georgia (2204 km), to their first stopover. Utah godwits also had the shortest residency period on winter habitats (174 days) (P < 0.001). Georgia godwits had the shortest southbound migration duration (2 days) (P < 0.02), the shortest residency period at breeding habitats (56 days) (P < 0.01) and the longest residency period on the wintering grounds (303 days) (P < 0.003). (152 pages)
2

Flight characteristics of pen-reared and wild prairie-chickens and an evaluation of a greenhouse to rear prairie-chickens

Hess, Marc Frederick 30 September 2004 (has links)
The introduction of pen-reared Attwater's prairie-chickens (APC, Tympanuchus cupido attwateri) into the wild to supplement existing populations has met with marginal success. Flight characteristics, predator avoidance behavior, and rearing methods are possible factors contributing to post-release mortality of pen-reared birds. To evaluate flight characteristics and predator avoidance behavior of pen-reared APC's released onto the Attwater Prairie Chicken National Wildlife Refuge, flight characteristics and predator avoidance behavior of pen-reared APC's was compared to wild greater prairie-chickens (GPC, T. c. pinnatus) in Minnesota and Kansas using a radar gun and a trained dog. There was no difference (P = 0.134) in flight speed for pen-reared APC and wild GPC. However, wild GPC had greater (P < 0.001) flight distances than did pen-reared APC. Wild GPC and pen-reared APC that had survived in the wild for at least a year flushed at a greater (P < 0.001) distance from an approaching human than did pen-reared APC that had been released for less than 3 months. A trained dog was able to approach closer (P < 0.001) to APC than GPC before birds flushed, and APC did not fly as far as GPC after being flushed by the dog. Pen-reared APC displayed flight endurance deficiencies and were more approachable by humans and a dog before they flushed when compared to wild GPC, which could explain their increased mortality when released into the wild. To determine if APC chicks could be reared without daily human contact, pelleted food, and water in founts, a greenhouse was used to rear chicks in a semi-natural environment. Planted vegetation and commercial insects provided hiding cover and a food source for the APC chicks. An underground heat source provided chick warmth, and water misters and a sprinkler system simulated dew (a water source for chicks) and rain. The greenhouse provided chicks protection from predators and adverse weather conditions (before they could thermo-regulate) while exposing chicks to natural sunlight, day length, and temperature fluctuations. This technique allowed chicks to be reared in a semi-natural environment which reinforced their natural foraging behavior for food and water, and reinforced their hiding and avoidance behaviors, creating a wilder pen-reared bird.
3

Flight characteristics of pen-reared and wild prairie-chickens and an evaluation of a greenhouse to rear prairie-chickens

Hess, Marc Frederick 30 September 2004 (has links)
The introduction of pen-reared Attwater's prairie-chickens (APC, Tympanuchus cupido attwateri) into the wild to supplement existing populations has met with marginal success. Flight characteristics, predator avoidance behavior, and rearing methods are possible factors contributing to post-release mortality of pen-reared birds. To evaluate flight characteristics and predator avoidance behavior of pen-reared APC's released onto the Attwater Prairie Chicken National Wildlife Refuge, flight characteristics and predator avoidance behavior of pen-reared APC's was compared to wild greater prairie-chickens (GPC, T. c. pinnatus) in Minnesota and Kansas using a radar gun and a trained dog. There was no difference (P = 0.134) in flight speed for pen-reared APC and wild GPC. However, wild GPC had greater (P < 0.001) flight distances than did pen-reared APC. Wild GPC and pen-reared APC that had survived in the wild for at least a year flushed at a greater (P < 0.001) distance from an approaching human than did pen-reared APC that had been released for less than 3 months. A trained dog was able to approach closer (P < 0.001) to APC than GPC before birds flushed, and APC did not fly as far as GPC after being flushed by the dog. Pen-reared APC displayed flight endurance deficiencies and were more approachable by humans and a dog before they flushed when compared to wild GPC, which could explain their increased mortality when released into the wild. To determine if APC chicks could be reared without daily human contact, pelleted food, and water in founts, a greenhouse was used to rear chicks in a semi-natural environment. Planted vegetation and commercial insects provided hiding cover and a food source for the APC chicks. An underground heat source provided chick warmth, and water misters and a sprinkler system simulated dew (a water source for chicks) and rain. The greenhouse provided chicks protection from predators and adverse weather conditions (before they could thermo-regulate) while exposing chicks to natural sunlight, day length, and temperature fluctuations. This technique allowed chicks to be reared in a semi-natural environment which reinforced their natural foraging behavior for food and water, and reinforced their hiding and avoidance behaviors, creating a wilder pen-reared bird.
4

Metapopulation dynamics of dengue epidemics in French Polynesia / Dynamique métapopulationelle des épidémies de dengue en Polynésie française

Teissier, Yoann 22 May 2017 (has links)
La dengue circule en Polynésie française sur un mode épidémique depuis plus de 35 ans. Néanmoins, en dépit de la taille relativement faible de la population de Polynésie française, la circulation de la dengue peut persister à de faibles niveaux pendant de nombreuses années. L’objectif de ce travail de thèse est de déterminer si l'épidémiologie de la dengue dans le système insulaire de la Polynésie française répond aux critères d’un contexte de métapopulation. Après avoir constitué une base de données regroupant les cas de dengue répertoriés sur les 35 dernières années, nous avons réalisé des analyses épidémiologiques descriptives et statistiques. Celles-ci ont révélé des disparités spatio-temporelles distinctes pour l’incidence de la dengue des archipels et des îles, mais la structure de l'épidémie globale à l’échelle de la Polynésie française pour un même sérotype ne semble pas être affectée. Les analyses de la métapopulation ont révélé l'incidence asynchrone de la dengue dans un grand nombre d’îles. Celle-ci s’observe plus particulièrement par la différence de dynamique de l’incidence entre les îles plus peuplées et celles ayant une population plus faible. La taille critique de la communauté nécessaire à la persistance de la dengue n’est même pas atteinte par la plus grande île de Polynésie Française, Tahiti. Ce résultat suggère que la dengue peut uniquement persister grâce à sa propagation d’île en île. L'incorporation de la connectivité des îles à travers des modèles de migration humaine dans un modèle mathématique a produit une dynamique de la dengue davantage en adéquation avec les données observées, que les tentatives de modélisation traitant la population dans son ensemble. Le modèle de la métapopulation a été capable de simuler la même dynamique que les cas de dengue observés pour l'épidémie et la transmission endémique qui a suivi pour la période de 2001 à 2008. Des analyses complémentaires sur la différenciation de l'incidence de la maladie et de l'infection seront probablement instructives pour affiner le modèle de métapopulation de l'épidémiologie de la dengue en Polynésie française. / Dengue has been epidemic in French Polynesia for the past 35 years. Despite the relatively small population size in French Polynesia, dengue does not disappear and can persist at low levels for many years. In light of the large number of islands comprising French Polynesia, this thesis addresses the extent to which a metapopulation context may be the most appropriate to describe the epidemiology and persistence of dengue in this case. After compiling a database of dengue cases over the last 35 years, we used a number of descriptive and statistical epidemiological analyses that revealed distinct spatio-temporal disparity in dengue incidence for archipelago and islands. But the global structure of the epidemics of the same serotype were not affected. Metapopulation analyses revealed asynchronous dengue incidence among many of the islands and most notably larger islands lagged behind the smaller islands. The critical community size, which determines dengue persistence, was found to exceed even the largest island of Tahiti, suggesting that dengue can only exist by island-hopping. Incorporation of island connectedness through patterns of human migration into a mathematical model enabled a much better fit to the observed data than treating the population as a whole. The metapopulation model was able to capture to some extent the epidemic and low level transmission dynamics observed for the period of 2001-2008. Further analyses on differentiating incidence of disease and infection will likely prove informative for the metapopulation model of dengue epidemiology in French Polynesia.

Page generated in 0.0809 seconds