1 |
Fuel Efficiency Analysis of Optimized Flights / Bränsleeffektiveitet analy av optimerade flygningarBettar, Michael January 2022 (has links)
The impact of air travel on the climate, along with its increasing share in CO2 emissions have raised the demand for sustainable air travel solutions. The current aircraft technologies have seen significant improvement throughout the years. Although, the rate at which new aircraft technologies are developed can not keep up with the increased demand for air travel. Hence, a different approach to reduce the aviation’s impact on climate can be achieved by optimizing the vertical flight path in order to reduce the fuel consumption, i.e. using dynamic programming. Upon departure, an optimization of the vertical flight path is initiated and an optimal flight plan is suggested to the flight crew. The fuel saving produced by the optimal flight plan is a potential saving that can only be fully achieved if the flight crew chose to fly according to the optimized flight path. However, restrictions from the Air Traffic Control, as well as the flight crew’s willingness to follow the optimized flight path can affect the achieved saving. Hence, a tool is developed in order to compute trip fuel consumption from post-flight data obtained from the Automatic Dependent Surveillance-Broadcast (ADS-B) surveillance technology. A method to identify the start and end positions of cruise segments is successfully implemented. Two methods of calculating the fuel are implemented and compared. The first method is based on simulating the actual flight, which uses the same performance model as for the simulation of the operational flight plan trip and optimized trip. The second method is based on utilizing the ADS-B data to obtain the aircraft speed which in return can be used as a parameter to obtain the fuel flow of the aircraft, hence the trip is not simulated. The results reveals that the simulation method produces flight trajectories that are comparable to the operational and optimized flight plans since they use the same model structure. However, using ADS-B data to obtain fuel consumption represents the actual flight trajectory more accurately. Furthermore, an optimization algorithm based on the onboard Flight Management Computer is implemented. According to the results, the FMC optimization offers a sufficient optimization of the cruise phase, when compared to the OFP trip, however performs worse than the dynamic programming, which provides a global optimal solution. / Flygresornas inverkan på klimatet, tillsammans med dess ökande andel av CO2-utsläppen, har ökat kraven på hållbara flygplanslösningar. Den nuvarande flygplansteknologin har genomgått betydande förbättringar genom åren. Men takten för vilken ny flygplansteknik utvecklas kan inte hålla jämna steg med den ökade efterfrågan på flygresor. Däremot kan ett annat tillvägagångssätt för att minska flygets påverkan på klimatet uppnås genom att optimera den vertikala flygvägen för att minska bränsleförbrukningen, d.v.s. med hjälp av högupplösta väderdata. Vid avgång initieras en dynamisk programmering där optimering av den vertikala flygbanan och en optimal färdplan föreslås för flygbesättningen. Bränslebesparingen som den optimala färdplanen ger är en besparingspotential som endast kan uppnås fullt ut om flygbesättningen väljer att flyga enligt den. Restriktioner från flygledningen, samt flygbesättningens vilja att följa den optimerade färdplanen kan dock påverka den uppnådda besparingen. Därav utvecklas ett verktyg för att beräkna färdens bränsleförbrukning från postflight data erhållna från Automatic Dependent Surveillance-Broadcast (ADS-B) övervakningsteknologi. En metod för att identifiera start- och slutpositionerna för kryssningssegment implementeras framgångsrikt. Två metoder för att beräkna bränslet implementeras och jämförs. Den första metoden baseras på att simulera den faktiska flygningen. Denna metod använder samma prestandamodell som för simuleringen av den operativa färdplanens resa och den optimerade resan. Den andra metoden baseras på att använda ADS-B-data för att erhålla flygplanets hastighet, som i sin tur kan användas som en parameter för att få fram flygplanets bränsleflöde vid en tidpunkt. Resultaten visar att simuleringsmetoden ger flygbanor som är rättvist jämförbara med de operativa och optimerade flygplanerna, då de använder samma modell. Men att använda ADS-B-data för att få bränsleförbrukning representerar den faktiska flygbanan mer exakt. Dessutom implementeras en optimeringsalgoritm baserad på den inbyggda Flight Management Computer. Enligt resultaten erhåller FMC-optimeringen en tillfredsställande optimering av kryssningsfasen, jämfört med OFP-resan, men presterar sämre än den dynamiska programmeringen, vilket alltid ger en global optimal lösning.
|
2 |
Post-Flight Analysis of Fuel Consumption / Efter-flygningsanalys av bränsleförbrukningBettar, Michael January 2022 (has links)
The impact of air travel on the climate, along with its increasing share in CO2 emissions haveraised the demand for sustainable air travel solutions. The current aircraft technologies haveseen significant improvement throughout the years. Although, the rate at which new aircrafttechnologies are developed can not keep up with the increased demand for air travel. Hence, adifferent approach to reduce the aviation’s impact on climate can be achieved by optimizing thevertical flight path in order to reduce the fuel consumption, i.e. using dynamic programming.Upon departure, an optimization of the vertical flight path is initiated and an optimal flight planis suggested to the flight crew. The fuel saving produced by the optimal flight plan is a potential saving that can only be fullyachieved if the flight crew chose to fly according to the optimized flight path. However, restrictionsfrom the Air Traffic Control, as well as the flight crew’s willingness to follow theoptimized flight path can affect the achieved saving. Hence, a tool is developed in order tocompute trip fuel consumption from post-flight data obtained from the Automatic DependentSurveillance-Broadcast (ADS-B) surveillance technology. A method to identify the start andend positions of cruise segments is successfully implemented. Two methods of calculating thefuel are implemented and compared. The first method is based on simulating the actual flight,which uses the same performance model as for the simulation of the operational flight plantrip and optimized trip. The second method is based on utilizing the ADS-B data to obtain theaircraft speed which in return can be used as a parameter to obtain the fuel flow of the aircraft,hence the trip is not simulated. The results reveals that the simulation method produces flighttrajectories that are comparable to the operational and optimized flight plans since they use thesame model structure. However, using ADS-B data to obtain fuel consumption represents theactual flight trajectory more accurately. Furthermore, an optimization algorithm based on the on-board Flight Management Computeris implemented. According to the results, the FMC optimization offers a sufficient optimizationof the cruise phase, when compared to the OFP trip, however performs worse than the dynamicprogramming, which provides a global optimal solution / Flygresornas inverkan på klimatet, tillsammans med dess ökande andel av CO2-utsläppen, harökat kraven på hållbara flygplanslösningar. Den nuvarande flygplansteknologin har genomgåttbetydande förbättringar genom åren. Men takten för vilken ny flygplansteknik utvecklas kaninte hålla jämna steg med den ökade efterfrågan på flygresor. Däremot kan ett annat tillvägagångssättför att minska flygets påverkan på klimatet uppnås genom att optimera den vertikalaflygvägen för att minska bränsleförbrukningen, d.v.s. med hjälp av högupplösta väderdata. Vidavgång initieras en dynamisk programmering där optimering av den vertikala flygbanan och enoptimal färdplan föreslås för flygbesättningen. Bränslebesparingen som den optimala färdplanen ger är en besparingspotential som endast kanuppnås fullt ut om flygbesättningen väljer att flyga enligt den. Restriktioner från flygledningen,samt flygbesättningens vilja att följa den optimerade färdplanen kan dock påverka denuppnådda besparingen. Därav utvecklas ett verktyg för att beräkna färdens bränsleförbrukningfrån post-flight data erhållna från Automatic Dependent Surveillance-Broadcast (ADS-B) övervakningsteknologi.En metod för att identifiera start- och slutpositionerna för kryssningssegmentimplementeras framgångsrikt. Två metoder för att beräkna bränslet implementeras ochjämförs. Den första metoden baseras på att simulera den faktiska flygningen. Denna metodanvänder samma prestandamodell som för simuleringen av den operativa färdplanens resa ochden optimerade resan. Den andra metoden baseras på att använda ADS-B-data för att erhållaflygplanets hastighet, som i sin tur kan användas som en parameter för att få fram flygplanetsbränsleflöde vid en tidpunkt. Resultaten visar att simuleringsmetoden ger flygbanor somär rättvist jämförbara med de operativa och optimerade flygplanerna, då de använder sammamodell. Men att använda ADS-B-data för att få bränsleförbrukning representerar den faktiskaflygbanan mer exakt. Dessutom implementeras en optimeringsalgoritm baserad på den inbyggda Flight ManagementComputer. Enligt resultaten erhåller FMC-optimeringen en tillfredsställande optimering avkryssningsfasen, jämfört med OFP-resan, men presterar sämre än den dynamiska programmeringen,vilket alltid ger en global optimal lösning.
|
Page generated in 0.0983 seconds