• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mathematical and Numerical Modeling of 1-D and 2-D Consolidation

Gustavsson, Katarina January 2003 (has links)
A mathematical model for a consolidation process of a highlyconcentrated, flocculated suspension is developed.Thesuspension is treated as a mixture of a fluid and solidparticles by an Eulerian two-phase fluid model.W e characterizethe suspension by constitutive relations correlating thestresses, interaction forces, and inter-particle forces toconcentration and velocity gradients.This results in threeempirically determined material functions: a hystereticpermeability, a non-Newtonian viscosity and a non-reversibleparticle interaction pressure.P arameters in the models arefitted to experimental data. A simulation program using finite difference methods both intime and space is applied to one and two dimensional testcases.Numer ical experiments are performed to study the effectof different viscosity and permeability models. The effect ofshear on consolidation rate is studied and it is significantwhen the permeability hysteresis model is employed.
2

Mathematical and Numerical Modeling of 1-D and 2-D Consolidation

Gustavsson, Katarina January 2003 (has links)
<p>A mathematical model for a consolidation process of a highlyconcentrated, flocculated suspension is developed.Thesuspension is treated as a mixture of a fluid and solidparticles by an Eulerian two-phase fluid model.W e characterizethe suspension by constitutive relations correlating thestresses, interaction forces, and inter-particle forces toconcentration and velocity gradients.This results in threeempirically determined material functions: a hystereticpermeability, a non-Newtonian viscosity and a non-reversibleparticle interaction pressure.P arameters in the models arefitted to experimental data.</p><p>A simulation program using finite difference methods both intime and space is applied to one and two dimensional testcases.Numer ical experiments are performed to study the effectof different viscosity and permeability models. The effect ofshear on consolidation rate is studied and it is significantwhen the permeability hysteresis model is employed.</p>
3

A Study of Channelling Behaviour in Batch Sedimentation.

Kurt, Nilufer, nilf_k@yahoo.com.au January 2006 (has links)
Batch sedimentation is a method that enables us to understand the mechanism of compaction and compression of sedimenting slurry. However, batch settling behaviour is a very complex phenomenon that is not easily described fully by a mathematical model. This causes unrealistically large empirical calculations when the thickener size estimations are required. Channelling, reverse concentration gradients and the initial concentration of the slurry have large effects on batch settling. Existing procedures do not provide clear relationships involving these three significant variables. In this study, batch sedimentation phenomena are examined in detail and possible explanations are given to clarify the complex behaviour using recent theories. Modern research has shown that channelling is an unwanted formation because channels can change the concentration at the bottom and top of the bed by carrying a great amount of flocs upwards. Batch sedimentation tests were performed using flocculated slurry of Calcium Carbonate at various initial concentrations such as 250 g/l, 500 g/l, 750 g/l and 1000 g/l to observe channelling and reverse concentration gradients. Flux plots for the batch system reveal behaviour which can be attributed to the upward flow of solids. In addition, photographic methods were used to observe settling processes, channelling mechanisms and flocs in the channels. One of the purposes of this work was to examine the phenomenological solid-liquid separation theory of Buscall and White (1987), which employs the material properties of the local volume fraction, compressive yield stress Py ()ö and hindered settling function R()ö to identify the material behaviour in batch sedimentation. Stepped-pressure filtration and batch settling tests were used to measure the material characteristics for the flocculated CaCO3 suspension. Experimental data were demonstrated using Height versus Time and Height versus Concentration graphs and displayed the possible region of reverse concentration gradients and channelling in the settling bed. Mathematical predictions adopted from Usher (2002) were performed employing material characteristics of the material and graphical documentations were presented. The results of mathematical predictions were compared to the experimental results and the modes of sedimentation explained by Lester et al. (2005). Fundamental theoretical models and experimental observations highlight that the main driving force for channelling is the high-pressure gradient at the bottom of the bed and the most important factors that cause channelling are high initial concentration of slurry and settling time. The predictions also show that the material and flocculant used for the batch settling tests demonstrate important effect on the settling process. The knowledge and information gained from this study is valuable to maximize the thickening process.
4

Suspension dewatering: characterisation and optimisation

Usher, Shane Patrick Unknown Date (has links) (PDF)
The alumina industry produces a significant quantity of bauxite residue suspension (red mud) that must be washed and dewatered in trains of thickeners and residue disposal areas to recover valuable alumina and sodium hydroxide. The Australian Alumina Industry have come together to sponsor a project to address waste minimisation and environmental impact issues collectively through the optimisation of dewatering in their washer trains and residue disposal areas. The project aims to maximise thickener underflow and tailings dam solids concentrations. (For complete abstract open document)

Page generated in 0.0698 seconds