• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 148
  • 111
  • 33
  • 14
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • Tagged with
  • 375
  • 94
  • 93
  • 79
  • 57
  • 48
  • 45
  • 36
  • 35
  • 32
  • 29
  • 25
  • 25
  • 24
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Role Of Interfacial Phenomena In Bioprocessing Of Minerals Using Bacillus Polymyxa

Shashikala, A R 02 1900 (has links)
In recent years there has been growing interest in bio-mineral processing due to its low operating costs and its application in processing lean-grade ores. Bioprocessing is a good alternative to conventional hydrometallurgy process in mineral processing. In recent times microorganisms have been used as surface modifiers in processes such as froth flotation and flocculation. The surface properties of microbes and minerals such as zeta potential and surface hydrophobicity play a major role in determining adhesion of microorganisms to minerals and hence, the efficiency of flocculation and flotation. These properties also depend on solution conditions such as pH and ionic strength. Adhesion of microorganisms to mineral surfaces can alter the surface properties of the minerals. Such surface modification imparting hydrophobicity or hydrophilicity is used in flocculation and flotation of fine particles. In this research work the effect of ionic strength and pH in deteraiining the surface properties and hence adhesion of the bacterium Bacillus polymyxa to minerals such as hematite, quartz and coal has been studied in detail. The effect of the ionic strength and pH on the electrokinetics of the minerals and bacteria and its subsequent effect on adhesion and flocculation were investigated in detail. Contact angle measurements along with the zeta potential results were used to calculate the interaction energies between the mineral and the microorganism to establish a mechanism for the interaction. The following major conclusions can be drawn from this study. Results indicate that increase in the ionic strength significantly changes the zeta potential of hematite and bacteria without varying the isoelectric point. Increase in the ionic strength caused very little change in the zeta potential of quartz and coal. The adhesion of bacterial cells on to the minerals was found to be dependent on pH, ionic strength and conditioning time. Adhesion of bacterial cells was found to be more on hematite and coal when compared to quartz. The adsorption isotherms of Bacillus polymyxa cells with respect to all the three minerals were found to obey Langmuir isotherm. Flocculation studies demonstrated that the settling rate of hematite and coal was enhanced in presence of bacterial cells and electrolyte. However quartz settled much slower under the same conditions indicating that the quartz particles are being dispersed. Thus, selective flocculation of hematite and coal is possible which can be used in separating them from quartz effectively. The different components of total interaction energy arising from Lifshitz-van der Waal forces, acid/base forces and electrostatic forces were calculated using the van Oss approach. Calculation of the components of the acid base free energy showed that coal and hematite were hydrophobic compared to quartz and the bacterium. From total interaction energy calculation based on the extended DLVO theory, hematite and coal were found to have a net negative interaction energy in acidic pH values and hence attractive forces are predominant. Quartz was found to have a net repulsive energy at all the pH values at low ionic strengths but increase in ionic strength the interaction energy become attractive. The AGLW values of quartz was found to be attractive which is probably responsible for bacterial adhesion onto quartz.
192

Cellulose fiber-to-fiber and fines-to-fiber interactions their coagulation and flocculation tendencies as affected by electrolytes and polymers in an agitated water slurry /

King, Clarence A. January 1975 (has links) (PDF)
Thesis (Ph. D.)--Institute of Paper Chemistry, 1975. / Includes bibliographical references (p. 124-128).
193

Scale of flocculation for fully developed turbulent tube flow of dilute fiber suspensions

Persinger, W. Harvey January 1974 (has links) (PDF)
Thesis (Ph. D.)--Institute of Paper Chemistry, 1974. / Bibliography: leaves 122-124.
194

Development of a non-isothermal compositional reservoir simulator to model asphaltene precipitation, flocculation, and deposition and remediation

Darabi, Hamed 25 June 2014 (has links)
Asphaltene precipitation, flocculation, and deposition in the reservoir and producing wells cause serious damages to the production equipment and possible failure to develop the reservoirs. From the field production prospective, predicting asphaltene precipitation, flocculation, and deposition in the reservoir and wellbore may avoid high expenditures associated with the reservoir remediation, well intervention techniques, and field production interruption. Since asphaltene precipitation, flocculation, and deposition strongly depend on the pressure, temperature, and composition variations (e.g. phase instability due to CO2 injection), it is important to have a model that can track the asphaltene behavior during the entire production system from the injection well to the production well, which is absent in the literature. Due to economic concerns for asphaltene related problems, companies spend a lot of money to design their own asphaltene inhibition and remediation procedures. However, due to the complexity and the lack of knowledge on the asphaltene problems, these asphaltene inhibition and remediation programs are not always successful. Near-wellbore asphaltene inhibition and remediation techniques can be divided into two categories: changing operating conditions, and chemical treatment of the reservoir. Although, the field applications of these procedures are discussed in the literature, a dynamic model that can handle asphaltene inhibition and remediation in the reservoir is missing. In this dissertation, a comprehensive non-isothermal compositional reservoir simulator with the capability of modeling near-wellbore asphaltene inhibition and remediation is developed to address the effect of asphaltene deposition on the reservoir performance. This simulator has many additional features compared to the available asphaltene reservoir simulators. We are able to model asphaltene behavior during primary, secondary, and EOR stages. A new approach is presented to model asphaltene precipitation and flocculation. Adsorption, entrainment, and pore-throat plugging are considered as the main mechanisms of the asphaltene deposition. Moreover, we consider porosity, absolute permeability, and oil viscosity reductions due to asphaltene. It is well known that the asphaltene deposition on the rock surface changes the wettability of the rock towards oil-wet condition. Although many experiments in the literature have been conducted to understand the physics underlying wettability alteration due to asphaltene deposition, a comprehensive mathematical model describing this phenomenon is absent. Based on the available experimental data, a wettability alteration model due to asphaltene deposition is proposed and implemented into the simulator. Furthermore, the reservoir simulator is coupled to a wellbore simulator to model asphaltene deposition in the entire production system, from the injection well to the production well. The coupled reservoir/wellbore model can be used to track asphaltene deposition, to diagnose the potential of asphaltene problems in the wellbore and reservoir, and to find the optimum operating conditions of the well that minimizes asphaltene problems. In addition, the simulator is capable of modeling near-wellbore asphaltene remediation using chemical treatment. Based on the mechanisms of the asphaltene-dispersant interactions, a dynamic modeling approach for the near-wellbore asphaltene chemical treatments is proposed and implemented in the simulator. Using the dynamic asphaltene remediation model, we can optimize the asphaltene treatment plan to reduce asphaltene related problems in a field. The results of our simulations show that asphaltene precipitation, flocculation, and deposition in the reservoir and wellbore are dynamic processes. Many parameters, such as oil velocity, wettability alteration, pressure, temperature, and composition variations influence the trend of these processes. In the simulation test cases, we observe that asphaltene precipitation, flocculation, and deposition can occur in primary production, secondary production, or EOR stages. In addition, our results show that the wettability alteration has the major effect on the performance of the reservoir, comparing to the permeability reduction. During CO2 flooding, asphaltene precipitation occurs mostly at the front, and asphaltene deposition is at its maximum close to the reservoir boundaries where the front velocity is at its minimum. In addition, the results of the coupled reservoir/wellbore simulator show that the behavior of asphaltene in the wellbore and reservoir are fully coupled with each other. Therefore, a standalone reservoir or wellbore simulator is not able to predict the asphaltene behavior properly in the entire system. Finally, we show that the efficiency of an asphaltene chemical treatment plan depends on the type of dispersant, amount of dispersant, soaking time, number of treatment jobs, and the time period between two treatment jobs. / text
195

Bioprocessing of Microalgae for Bioenergy and Recombinant Protein Production

Garzon Sanabria, Andrea J 16 December 2013 (has links)
This dissertation investigates harvesting of marine microalgae for bioenergy and production of two recombinant proteins for therapeutic applications in Chlamydomonas reinhardtii. The first study describes harvesting of marine microalgae by flocculation using aluminum chloride (AlCl_3), natural polymer chitosan, and synthetic cationic polymers. Harvesting and concentration process of low concentration microalgae cultures ranging from 1 to 2 g dry weight per liter was affected by algogenic organic matter (AOM), ionic strength, cell concentration, polymer charge density, and media pH. Marine microalgae flocculation was greatly affected by the presence of AOM independently of the flocculant chemistry. Presence of AOM demanded extra flocculant dosage i.e., 3-fold of AlCl3, 7-fold of highly charged synthetic cationic polymer, and 10-fold of chitosan. Flocculant dosage required for > 90 % flocculation efficiency in the presence of AOM was 160 mg/L, 50 mg/L, and 20 mg/L when using AlCl_3, chitosan, and best (more efficient) synthetic polymer respectively. The high-ionic strength of saline water did not have a significant effect on flocculation efficiency when using AlCl_3. However, to achieve efficient algal biomass removal, application of highly-charged synthetic polymers was required to overcome the presence of electrolytes. The best synthetic cationic polymer tested herein, which achieved greater than 90 % flocculation efficiency at 20 mg/L dosage, was a polymer with 99 % cationic charge density. Cell concentration also affected flocculant dosage requirement; low density cultures (10^6 cells/mL) required 6-fold greater dosages than cultures grown until early stationary phase (10^7 cells/mL). The second study addresses cultivation, extraction and purification challenges of two complex recombinant proteins, an immunotoxin molecule (MT51) and malaria vaccine antigen (Pfs25) produced in the chloroplast of C. reinhardtii. Main challenges identified were i) low transgene expression level, ii) proteolytic instability of MT51 immunotoxin, and iii) aggregation of Pfs25 antigen. Optimal expression and accumulation of Pfs25 antigen required growing C. reinhardtii cultures to late exponential phase (10^6 cells/mL) and inducing transgene expression for 24 h at a photon irradiance of 120 µmol/m^2s.
196

Hydrocarbon recovery from waste streams of oil sands processing

Thomas, Tenny Unknown Date
No description available.
197

Physico-Chemical Processes for Oil Sands Process-Affected Water Treatment

Pourrezaei,Parastoo Unknown Date
No description available.
198

Effect of Laminar Shear on the Aggregate Structure of Flocculant-dosed Kaolinite Slurries

Vaezi Ghobaeiyeh, Farid Unknown Date
No description available.
199

The physical and physiological effects of nitrogen and phosphorus limitation on a pulp and paper mill effluent biotreatment microbial community /

Bhathena, Jasmine January 2004 (has links)
The influence of nitrogen (N) and phosphorus (P) limitation on pulp and paper mill activated sludge (AS) floc properties was studied using a bioreactor fed with synthetic Kraft mill effluent. The bioreactor and synthetic effluent were designed and shown to perform like the real mill system providing the AS, establishing the in vivo relevance of the results. Limitation of either N or P produced inadequate effluent biotreatment, shown by poor BOD5 and suspended solids removal, and by decreased biomass health, performance, and floc settling. Greatly enhanced poly-beta-hydroxybutyrate (PHB) (but not carbohydrate or extracellular polymeric substances [EPS]) synthesis was the common response of the floc microbial community to N limitation over many days. In contrast, P-limitation increased total carbohydrate and EPS, but not PHB. / N limitation, but not P limitation, caused the net floc surface charge to be much more negative, while P-limitation, but not N-limitation, increased the floc bound water content and surface hydrophobicity. Thus, in real pulp and paper mill AS systems, careful manipulation of N or P additions may be useful to optimize the key process of charged polymer-assisted AS dewatering.
200

Using ozonation and alternating redox potential to increase nitrogen and estrogen removal while decreasing waste activated sludge production

Dytczak, Magdalena Anna 10 September 2008 (has links)
The effectiveness of partial ozonation of return activated sludge for enhancing denitrification and waste sludge minimization were examined. A pair of nitrifying sequencing batch reactors was operated in either aerobic or alternating anoxic/aerobic conditions, with one control and one ozonated reactor in each set. The amount of solids decreased with the ozone dose. Biomass in the anoxic/aerobic reactor was easier to destroy than in the aerobic one, generating approximately twice as much soluble chemical oxygen demand (COD) by cell lysis. Increased COD favoured production of extracellular polymers in ozonated reactors, enhancing flocculation and improving settling. Floc stability was also strengthened in prolonged operation in alternating treatment, resulting in declined solids destruction. Dewaterability was better in alternating reactors than in aerobic ones indicating that incorporation of an anoxic zone for biological nutrient removal leads to improvement in sludge dewatering. The negative impact of ozonation on dewaterability was minimal in terms of the long-term operation. Ozone successively destroyed indicator estrogenic compounds, contributing to total estrogen removal from wastewater. Denitrification rate improved up to 60% due to additional carbon released by ozonation. Nitrification rates deteriorated much more in the aerobic than in the alternating reactor, possibly as a result of competition created by growth of heterotrophs receiving the additional COD. Overall, ozonation provided the expected benefits and had less negative impacts on processes in the alternating treatment, although after prolonged operation, benefits could become less significant. The alternating anoxic/aerobic reactor achieved twice the nitrification rates of its aerobic counterpart. Higher removal rates of estrogens were associated with higher nitrification rates, supporting the contention that the nitrifying biomass was responsible for their removal. The alternating treatment offered the better estrogen biodegradation. Microbial populations in both reactors were examined with fluorescent in situ hybridization. Dominance of rapid nitrifiers like Nitrosomonas and Nitrobacter (79.5%) in the alternating reactor, compared to a dominance of slower nitrifiers like Nitrosospira and Nitrospira (78.2%) in the aerobic reactor were found. The findings are important to design engineers, as reactors are typically designed based on nitrifiers’ growth rate determined in strictly aerobic conditions.

Page generated in 0.1038 seconds