1 |
Computational studies on the motion of a stratified fluid /Leung, Wai-Man. January 2001 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2002. / Includes bibliographical references (leaves 56-59).
|
2 |
Some flows through a hole in a wall in viscous and non-viscous fluids.Guiney, David Charles. January 1972 (has links) (PDF)
Thesis (Ph.D.) -- University of Adelaide, Dept. of Mathematics, 1973.
|
3 |
Issues in low-dimensional modeling of unsteady flows : convergence, asymptotic stability and reconstruction procedures /Sirisup, Sirod. January 2005 (has links)
Thesis (Ph.D.)--Brown University, 2005. / Vita. Thesis advisor: George Em Karniadakis. Includes bibliographical references (leaves 166-175). Also available online.
|
4 |
Mechanics of particle entrainment in turbulent open-channel flowsWitz, Matthew J. January 2015 (has links)
An advanced understanding of particle entrainment is required to optimise the design and maintenance of numerous open channel hydraulic systems and structures placed in these systems; including river channels and canals. This study is on particle entrainment (defined as the movement of a particle from a stationary position to being mobile in the flow). Three aspects of particle entrainment were identified as the focus of this work: First, the waiting time for an exposed particle to entrain under constant flow conditions. Second, the flow features responsible for the entrainment of an individual exposed particle. Third, the motion of an entrained particle immediately after entrainment. Waiting time was found to be highly sensitive to protrusion, with a small increase in protrusion resulting in a significant decrease in waiting time. Contrary to previous suggestions the waiting time to entrainment was found to be poorly described by an exponential distribution; instead Weibull or gamma distributions provide an improved fit in both qualitative and quantitative terms. Ensemble averaged flow fields at the point of entrainment were computed to determine the features responsible for entrainment. The data from the transverse vertical PIV plane indicated the presence of two counter-rotating vortices, with the boundary between the vortices located directly over the entrainment particle. The streamwise vertical PIV measurements showed the presence of a structure extending for a considerable distance in the streamwise direction, the length of which appeared to be independent of submergence. Further, the inclination of the downstream end of the structure appeared to increase with submergence. From the point of entrainment particle dffusion in all three coordinate directions displays an exponent significantly greater than that of ballistic diffusion. From the point of entrainment particle diffusion in all three coordinate directions displays an exponent significantly greater than that of ballistic diffusion. The results highlight the clear difference in the local scale between the diffusion of an already mobile particle with one starting from a position of rest.
|
5 |
Modelling fluid flow and heat transfer in some volcanic systemsKent, Russell Malcolm January 1995 (has links)
No description available.
|
6 |
Two-phase flow through sudden area expansionsAhmed, Wael H. Ching, Chan Y. Shoukri, Mamdouh. January 1900 (has links)
Thesis (Ph.D.)--McMaster University, 2006. / Supervisors: Chan Y. Ching, Mamdouh Shoukri.
|
7 |
Bending and buckling of a falling viscous threadBlount, Maurice John January 2010 (has links)
No description available.
|
8 |
Nonlinear interactions in mixing layers and compressible heated round jets.Jarrah, Yousef Mohd. January 1989 (has links)
The nonlinear interactions between a fundamental instability mode and both its harmonics and the changing mean flow are studied using the weakly nonlinear stability theory of Stuart and Watson, and numerical solutions of coupled nonlinear partial differential equations. The first part of this work focuses on incompressible cold (or isothermal; constant temperature throughout) mixing layers, and for these, the first and second Landau constants are calculated as functions of wavenumber and Reynolds number. It is found that the dominant contribution to the Landau constants arises from the mean flow changes and not from the higher harmonics. In order to establish the range of validity of the weakly nonlinear theory, the weakly nonlinear and numerical solutions are compared and the limitation of each is discussed. At small amplitudes and at low-to-moderate Reynolds numbers, the two results compare well in describing the saturation of the fundamental, the distortion of the mean flow, and the initial stages of vorticity roll-up. At larger amplitudes, the interaction between the fundamental, second harmonic, and the mean flow is strongly nonlinear and the numerical solution predicts flow oscillations, whereas the weakly nonlinear theory yields saturation. Beyond the region of exponential growth, the instability waves evolve into a periodic array of vortices. In the second part of this work, the weakly nonlinear theory is extended to heated (or nonisothermal mean temperature distribution) subsonic round jets where quadratic and cubic nonlinear interactions are present, and the Landau constants also depend on jet temperature ratio, Mach number and azimuthal mode number. Under exponential growth and nonlinear saturation, it is found that heating and compressibility suppress the growth of instability waves, that the first azimuthal mode is the dominant instability mode, and that the weakly nonlinear solution describes the early stages of the roll-up of an axisymmetric shear layer. The receptivity of a typical jet flow to pulse type input disturbances is also studied by solving the initial value problem and then examining the behavior of the long-time solution. The excitation produces a wave packet which consists of a few oscillations and is convected downstream by the mean flow. The magnitude of the disturbance in the jet depends on the location of the excitation and there is an optimum position at which little energy input will produce large perturbations. It is found that in order to generate the largest perturbations at any point in the jet, the disturbance should be deposited into the flow at a point where the phase velocity of the most amplified wave equals the fluid velocity (of the base flow).
|
9 |
Analysis of unsteady heat transfer by natural convection in a two-dimensional square cavity using a high order finite-volume method.Mahdi, Hashim Salman. January 1989 (has links)
Unsteady heat transfer by natural convection in a closed square cavity is investigated numerically. A new finite-volume approach is developed and applied to the two-dimensional continuity, vorticity, and energy equations. The variation of the field variables is approximated by bi-quadratic interpolation formulas over the space occupied by the finite volume and the region surrounding it. These are used in the integral conservation laws for energy, vorticity and mass. The convective transport is modelled using a new upstream-weighting approach which uses volume averages for the vorticity and the energy transported across the boundaries of the finite volume. The weighting is dependent on the skewness of the velocity field to the surfaces of the finite volume as well as its strength. It is adaptive to local flow conditions. The velocities are obtained from the application of the velocity induction law. Use is made of an image system for the free vorticity of fluid. In this way, the no-penetration condition is enforced at the cavity boundaries, but at the same time it may allow a slip condition to exist. This is not permitted in a viscous flow analysis, and the slip velocity is reduced to zero by the production of free vorticity at the boundaries. Two test cases are treated which have exact solutions. The first is not new and involves a rotating shaft. The errors are less than.06% for this case. The second case is new and involves convection past a source and sink. The maximum error is 2.3%. For both test cases, the maximum error occurs at moderate values of the cell Peclet number and diminishes at the extreme low and high values. The time-development of the profiles of the vorticity, horizontal velocity, and temperature is examined at different locations within the cavity for Rayleigh numbers equal to 10³, 10⁴, and 10⁵. For these calculations, a 21 x 21 grid was used. The flow is found to approach a steady-state condition. The steady-state results are compared with a benchmark solution. In general, the agreement is excellent. The discrepancy is found to be less than 2% for the vast majority of the results for this relatively coarse grid.
|
10 |
Two-phase flow in straight pipe and 90° bendsBruce, James Masson January 1971 (has links)
A method of measuring the moan liquid velocity in an airwater two-phase flow has been successfully developed utilising an electrolyte tracer technique. Liquid holdup is derived from this velocity measurement and compared with existing correlation. Two new liquid holdup correlations are developed, one empirical the other theoretical. These are compared with the correlations and data of others over a wide range of experimental conditions with encouraging results Pressure drop has been measured for straight pipe and for six 90 degree bends, of relative radius, R/d = 1 to 6 inclusive, The straight pipe data is in agreement with the results of others, A theoretical analysis of straight pipe pressure drop is attempted and good agreement let demonstrated with the Lockhart-Martinelli correlation The data for the tends indicate that the Lockhart-Martinelli correlation will predict the predict the Pressure drop With acceptable accuracy. The applicability of a homogeneous model with a constant bend resistance coefficient is demonstrated. The total momentum flux has been measured at the pipe exit and a liquid entrainment factor is postulated in order to satisfy momentum and continuity constraints for a two-velocity flow model. Entrainment correlations are developed for slug flows and an existing correlation for annular flow is found satisfactory with modification.
|
Page generated in 0.0674 seconds