• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 185
  • 29
  • 28
  • 18
  • 7
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 372
  • 372
  • 90
  • 70
  • 63
  • 57
  • 45
  • 45
  • 44
  • 44
  • 43
  • 43
  • 43
  • 38
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

CHARACTERIZATION OF ZERO MASS FLUX FLOW CONTROL FOR LOW SPEED AIRFOIL SEPARATION CONTROL

Pern, Nan Jou 01 January 2008 (has links)
An adaptive wing, a zero mass ux ow control device for low speed airfoil separation control, is investigated both experimentally and computationally at low speeds. The adaptive mechanism in the wings provides variable camber that can be actuated across a range of frequencies and amplitudes. Piezoelectric actuators are housed in a NACA 4415 airfoil with a chord length of :203 m. The entire adaptive wing assembly is then wrapped under a layer of latex membrane to provide a exible and smooth upper surface pro le. Experimental diagnostics include ow visualization, particle image velocimetry, as well as lift and drag measurements. The numerical simulation uses a 2D incompressible CFD code based on a nite-volume structured formulation with a chimera overset grid for the purpose of parallel computing. In the current study, the dimensionless speed range examined is 2:5 104 Re 1:5 105, where particular focus is given to Re 7:5 104, where Re = U` . All experiments and simulations are conducted in the range of attack angles from 0 24 and between reduced frequency values from 0 f+ 1:09, where f+ = f` U1 . Both experimental and computational results show that the region of separation is reduced when the actuation is turned on, thus enhancing aerodynamic e ciency. The maximum coe cient of lift increases by 26% when the reduced frequency, f+, is approximately :2, where the ow control mechanism appears to be most e ective. Phase-locked PIV and CFD vorticity plots reveal that the downward motion of the surface actuation decelerates the boundary ow and increases surface pressure, resulting in the formation of a series of cross-stream vortices that provides uid entrainment towards the suction surface, hence reducing separation.
92

CHARACTERIZATION AND FLOW PHYSICS OF PLASMA SYNTHETIC JET ACTUATORS

Santhanakrishnan, Arvind 01 January 2007 (has links)
Plasma synthetic jet actuators are investigated experimentally, in which the geometrical design of single dielectric barrier discharge (SDBD) plasma actuators is modified to produce zero-mass flux jets similar to those created by mechanical devices. The SDBD plasma actuator consists of two rectangular electrodes oriented asymmetrically and separated by a layer of dielectric material. Under an input of high voltage, high frequency AC or pulsed DC, a region of plasma is created in the interfacial air gap on account of electrical breakdown of the ambient air. A coupling between the electric field in the plasma and the neutral air near the actuator is introduced, such that the latter experiences a net force which results in a horizontal wall jet. This effect of the actuator has been demonstrated to be useful in mitigating boundary layer separation in aerodynamic flows. To increase the impact that a plasma actuator may have on the flow field, this research investigates the development and characterization of a novel flow control device, the plasma synthetic jet actuator, which tailors the residual air in the form of a vertical jet resembling conventional continuous and synthetic jets. This jet can be either three dimensional using annular electrode arrays, or nearly two dimensional using two rectangular strip exposed electrodes and one embedded electrode. Detailed measurements on the isolated plasma synthetic jet reveal that pulsed operation of the actuator results in the formation of multiple counterrotating vortical structures in the flow field. The output jet velocity and momentum are found to be higher for unsteady pulsing as compared to steady operation. In the case of flow over a flat plate, the actuator is observed to create a localized interaction region within which the baseline flow direction and boundary layer characteristics are modified. The efficiency of the actuator in coupling momentum to the neutral air is found to be related to the plasma morphology, pulsing frequency, actuator dimension, and input power. An analytical scaling model is proposed to describe the effects of varying the above variables on the output jet characteristics and actuator efficiency, and the experimental data is used for model validation.
93

A New Approach for Turbulent Simulations in Complex Geometries

Israel, Daniel Morris January 2005 (has links)
Historically turbulence modeling has been sharply divided into Reynolds averaged Navier-Stokes (RANS), in which all the turbulent scales of motion are modeled, and large-eddy simulation (LES), in which only a portion of the turbulent spectrum is modeled. In recent years there have been numerous attempts to couple these two approaches either by patching RANS and LES calculations together (zonal methods) or by blending the two sets of equations. In order to create a proper bridging model, that is, a single set of equations which captures both RANS and LES like behavior, it is necessary to place both RANS and LES in a more general framework.The goal of the current work is threefold: to provide such a framework, to demonstrate how the Flow Simulation Methodology (FSM) fits into this framework, and to evaluate the strengths and weaknesses of the current version of the FSM. To do this, first a set of filtered Navier-Stokes (FNS) equations are introduced in terms of an arbitrary generalized filter. Additional exact equations are given for the second order moments and the generalized subfilted dissipation rate tensor. This is followed by a discussion of the role of implicit and explicit filters in turbulence modeling.The FSM is then described with particular attention to its role as a bridging model. In order to evaluate the method a specific implementation of the FSM approach is proposed. Simulations are presented using this model for the case of separating flow over a "hump" with and without flow control. Careful attention is paid to error estimation, and, in particular, how using flow statistics and time series affects the error analysis. Both mean flow and Reynolds stress profiles are presented, as well as the phase averaged turbulent structures and wall pressure spectra. Using the phase averaged data it is possible to examine how the FSM partitions the energy between the coherent resolved scale motions, the random resolved scale fluctuations, and the subfilter quantities.The method proves to be qualitatively successful at reproducing large turbulent structures. However, like other hybrid methods, it has difficulty in the region where the model behavior transitions from RANS to LES> Consequently the phase averaged structures reproduce the experiments quite well, and the forcing does significantly reduce the length of the separated region. Nevertheless, the recirculation length is signficantly too large for all cases.Overall the current results demonstrate the promise of bridging models in general and the FSM in particular. However, current bridging techniques are still in their infancy. There is still important progress to be made and it is hoped that this work points out the more important avenues for exploration.
94

Numerical Investigation of the Role of Free-Stream Turbulence on Boundary-Layer Separation and Separation Control

Balzer, Wolfgang January 2011 (has links)
The aerodynamic performance of lifting surfaces operating at low Reynolds number conditions is impaired by laminar separation. Understanding of the physical mechanisms and hydrodynamic instabilities that are associated with laminar separation and the formation of laminar separation bubbles (LSBs) is key for the design and development of effective and efficient active flow control (AFC) devices. For the present work, laminar separation and its control were investigated numerically by employing highly-accurate direct numerical simulations (DNS).For a LSB on a curved plate, the primary and secondary instability of the uncontrolled flow were investigated. An inviscid Kelvin-Helmholtz (KH) instability was found to be responsible for the shedding of predominantly two-dimensional (2D) vortices. The onset of transition was caused by temporally-growing three-dimensional (3D) disturbances inside the separated region, which were supported by elliptical and hyperbolic secondary instabilities. The hyperbolic instability was demonstrated to be of absolute/global nature. High-amplitude forcing using pulsed vortex generator jets and 2D time-periodic blowing was found to exploit the KH instability and lead to a significant reduction in bubble size. In addition, the 2D forcing was found to suppress the secondary instabilities such that transition to turbulence was delayed.The role of free-stream turbulence (FST) in the transition process was investigated for a LSB on a flat plate. FST was shown to cause the formation of streamwise-elongated streaks inside the boundary layer. For the uncontrolled LSB, increasing the FST levels led to accelerated transition and a reduction in bubble size. The stage of linear disturbance growth due to the inviscid KH instability was not ``bypassed''. Flow control by means of 2D periodic excitation was found to remain effective, since it could exploit the KH instability and suppress secondary absolute instabilities. Transition was initiated by an interaction of the 2D wave introduced by the forcing and the streamwise boundary-layer streaks. The interaction led to a spanwise modulation of the 2D wave, which was amplified due to a convective elliptical instability.
95

Flexible cross layer design for improved quality of service in MANETs

Kiourktsidis, Ilias January 2011 (has links)
Mobile Ad hoc Networks (MANETs) are becoming increasingly important because of their unique characteristics of connectivity. Several delay sensitive applications are starting to appear in these kinds of networks. Therefore, an issue in concern is to guarantee Quality of Service (QoS) in such constantly changing communication environment. The classical QoS aware solutions that have been used till now in the wired and infrastructure wireless networks are unable to achieve the necessary performance in the MANETs. The specialized protocols designed for multihop ad hoc networks offer basic connectivity with limited delay awareness and the mobility factor in the MANETs makes them even more unsuitable for use. Several protocols and solutions have been emerging in almost every layer in the protocol stack. The majority of the research efforts agree on the fact that in such dynamic environment in order to optimize the performance of the protocols, there is the need for additional information about the status of the network to be available. Hence, many cross layer design approaches appeared in the scene. Cross layer design has major advantages and the necessity to utilize such a design is definite. However, cross layer design conceals risks like architecture instability and design inflexibility. The aggressive use of cross layer design results in excessive increase of the cost of deployment and complicates both maintenance and upgrade of the network. The use of autonomous protocols like bio-inspired mechanisms and algorithms that are resilient on cross layer information unavailability, are able to reduce the dependence on cross layer design. In addition, properties like the prediction of the dynamic conditions and the adaptation to them are quite important characteristics. The design of a routing decision algorithm based on Bayesian Inference for the prediction of the path quality is proposed here. The accurate prediction capabilities and the efficient use of the plethora of cross layer information are presented. Furthermore, an adaptive mechanism based on the Genetic Algorithm (GA) is used to control the flow of the data in the transport layer. The aforementioned flow control mechanism inherits GA’s optimization capabilities without the need of knowing any details about the network conditions, thus, reducing the cross layer information dependence. Finally, is illustrated how Bayesian Inference can be used to suggest configuration parameter values to the other protocols in different layers in order to improve their performance.
96

Integrated Actuation And Energy Harvesting In Prestressed Piezoelectric Synthetic Jets

Mane, Poorna 29 May 2009 (has links)
With the looming energy crisis compounded by the global economic downturn there is an urgent need to increase energy efficiency and to discover new energy sources. An approach to solve this problem is to improve the efficiency of aerodynamic vehicles by using active flow control tools such as synthetic jet actuators. These devices are able to reduce fuel consumption and streamlined vehicle design by reducing drag and weight, and increasing maneuverability. Hence, the main goal of this dissertation is to study factors that affect the efficiency of synthetic jets by incorporating energy harvesting into actuator design using prestressed piezoelectric composites. Four state-of-the-art piezoelectric composites were chosen as active diaphragms in synthetic jet actuators. These composites not only overcome the inherent brittle and fragile nature of piezoelectric materials but also enhance domain movement which in turn enhances intrinsic contributions. With these varying characteristics among different types of composites, the intricacies of the synthetic jet design and its implementation increases. In addition the electrical power requirements of piezoelectric materials make the new SJA system a coupled multiphysics problem involving electro–mechanical and structural–fluid interactions. Due to the nature of this system, a design of experiments approach, a method of combining experiments and statistics, is utilized. Geometric and electro-mechanical factors are investigated using a fractional factorial design with peak synthetic jet velocity as a response variable. Furthermore, energy generated by the system oscillations is harvested with a prestressed composite and a piezo-polymer. Using response surface methodology the process is optimized under different temperatures and pressures to simulate harsh environmental conditions. Results of the fractional factorial experimental design showed that cavity dimensions and type of signal used to drive the synthetic jet actuator were statistically significant factors when studying peak jet velocity. The Bimorph (~50m/s) and the prestressed metal composite (~45m/s) generated similar peak jet velocities but the later is the most robust of all tested actuators. In addition, an alternate input signal to the composite, a sawtooth waveform, leads to jets formed with larger peak velocities at frequencies above 15Hz. The optimized factor levels for the energy harvesting process were identified as 237.6kPa, 3.7Hz, 1MΩ and 12°C and the power density measured at these conditions was 24.27µW/mm3. Finally, the SJA is integrated with an energy harvesting system and the power generated is stored into a large capacitor and a rechargeable battery. After approximately six hours of operation 5V of generated voltage is stored in a 330µF capacitor with the prestressed metal composite as the harvester. It is then demonstrated that energy harvested from the inherent vibrations of a SJA can be stored for later use. Then, the system proposed in this dissertation not only improves on the efficiency of aerodynamic bodies, but also harvests energy that is otherwise wasted.
97

Experimental Design and Analysis of Piezoelectric Synthetic Jets in Quiescent Air

Mane, Poorna 01 January 2005 (has links)
Flow control can lead to saving millions of dollars in fuel costs each year by making an aircraft more efficient. Synthetic jets, a device for active flow control, operate by introducing small amounts of energy locally to achieve non-local changes in the flow field with large performance gains. These devices consist of a cavity with an oscillating diaphragm that divides it, into active and passive sides. The active side has a small opening where a jet is formed, whereas and the passive side does not directly participate in the fluidic jet.Research has shown that the synthetic jet behavior is dependent on the diaphragm and the cavity design hence, the focus of this work. The performance of the synthetic jet is studied under various factors related to the diaphragm and the cavity geometry. Four diaphragms, manufactured from piezoelectric composites, were selected for this study, Bimorph, Thunder®, Lipca and RFD. The overall factors considered are the driving signals, voltage, frequency, cavity height, orifice size, and passive cavity pressure. Using the average maximum jet velocity as the response variable, these factors are individually studied for each actuator and statistical analysis tools were used to select the relevant factors in the response variable. For all diaphragms, the driving signal was found to be the most important factor, with the sawtooth signal producing significantly higher velocities than the sine signal. Cavity dimensions also proved to be relevant factors when considering the designing of a synthetic jet actuator. The cavities with the smaller orifice produced lower velocities than those with larger orifices and the cavities with smaller volumes followed the same trend. Although there exist a relationship between cavity height and orifice size, the orifice size appears as the dominant factor.Driving frequency of the diaphragm was the only common factor to all diaphragms studied that was not statistically significant having a small effect on jet velocity. However along with waveform, it had a combined effect on jet velocity for all actuators. With the sawtooth signal, the velocity remained constant after a particular low frequency, thus indicating that the synthetic jet cavity could be saturated and the flow choked. No such saturation point was reached with the sine signal, for the frequencies tested. Passive cavity pressure seemed to have a positive effect on the jet velocity up to a particular pressure characteristic of the diaphragm, beyond which the pressure had an adverse effect. For Thunder® and Lipca, the passive cavity pressure that produced a peak was measured at approximately 20 and 18kPa respectively independent of the waveform utilized. For a Bimorph and RFD, this effect was not observed.Linear models for all actuators with the factors found to be statistically significant were developed. These models should lead to further design improvements of synthetic jets.
98

Numerical Modeling of Synthetic Jets in Quiescent Air with Moving Boundary Conditions

Castro, Nicholas D. 01 January 2005 (has links)
Flow control is a key factor in optimizing the performance of any vehicle moving through fluids. Particularly, in aerodynamics there are many potential benefits for implementing synthetic jets to achieve aircraft designs with less moving parts, uper- maneuverability, and separation control for fuel economy. Piezoelectric synthetic jets are of special interest because of their lightweight and low power consumption. Numerous publications on such jets are available. Actuator properties and boundary conditions relevant to this particular application however are often overlooked. The focus of this project is to numerically model synthetic jets in quiescent air to study the influence of cavity geometry and boundary conditions of the piezoelectric diaphragm on jet velocity. Numerical simulation is performed for two synthetic jet cavities of different height and orifice diameter. The numerical modeling utilizes a turbulent RNG κ – ε model and a moving boundary condition with two oscillating deflection profiles, parabolic and logarithmic, applied to the diaphragm. The actuators modeled are typical Bimorph and Thunder piezoelectric actuators. The initial conditions for the actuators are obtained experimentally resulting in 0.396mm and 0.07mm respectively when driven with a sinusoidal wave input at 1524 V/m and 4064 V/m. Although the velocity boundary numerical model gave overall better results than the current moving-boundary numerical model, the moving-boundary model is more accurate since it better approximates the movement of the diaphragm. From an optimizing viewpoint the moving boundary is more suitable to attempt to optimize the design because displacement magnitude of the diaphragm can be measured directly from experiments. For the higher displacement Bimorph actuator, a logarithmic profile matches the experimental results, whereas the parabolic profile provided better results for the relatively small displacement Thunder actuator. It is thus hypothesized that both tested actuators, Bimorph and Thunder, oscillate according to the specified logarithmic and parabolic profile respectively. Cavity height was briefly investigated for the Bimorph actuator. Results show that cavity height did not make a difference in the centerline velocity for the numerical model. The model fails to consider the important effect of the dynamic coupling of the actuator displacement and the pressure that develops inside the cavity. The pressure values obtained are comparable to the theoretical blocking pressure for the Bimorph in the cavity. The results of this study show that jet formation and development has unique characteristics for each actuator and cavity configuration. The smaller orifice cavity configuration produced a faster, longer, thinner jet with larger vortices than the bigger orifice. During max expulsion, t = 0.25T, and max ingestion, t = 0.75T, a low-pressure area localized at the corners of the orifice, inlet and exit respectively, were observed. All cavity configurations passed all three known jet formation criterions that include, Lo/Do>1, Re > 50, and Re/S2 > 0.16.
99

PARAMETERS GOVERNING SEPARATION CONTROL WITH SWEEPING JET ACTUATORS

Woszidlo, Rene, Woszidlo, Rene January 2011 (has links)
Parameters governing separation control with sweeping jet actuators over a deflected flap are investigated experimentally on a generic "Multiple Flap Airfoil" (MFA). The model enables an extensive variation of geometric and aerodynamic parameters to aid the scaling of this novel flow control method to full-size applications.Sweeping jets exit from discrete, millimeter-scale nozzles distributed along the span and oscillate from side-to-side. The sweeping frequency is almost linearly dependent on the supplied flowrate per actuator. The measured thrust exerted by a row of actuators agrees well with vectored momentum calculations. Frequency and thrust measurements suggest that the jet velocity is limited to subsonic speeds and that any additional increase in flowrate causes internal choking of the flow.Neither the flowrate nor the momentum input is found to be a sole parameter governing the lift for varying distance between adjacent actuators. However, the product of the mass flow coefficient and the square root of the momentum coefficient collapses the lift onto a single curve regardless of the actuator spacing. Contrary to other actuation methods, separation control with sweeping jets does not exhibit any hysteresis with either momentum input or flap deflection. A comparison between sweeping and non-sweeping jets illustrates the superior control authority provided by sweeping jets. Surface flow visualization on the flap suggests the formation of counter-rotating pairs of streamwise vortices caused by the interaction of neighboring jets.The actuation intensity required to attach the flow increases with increasing downstream distance from the main element's trailing edge and increasing flap deflection. No obvious dependence of the ideal actuation location on actuator spacing, flap deflection, angle of attack, or actuation intensity is found within the tested range. Comparisons between experimental and numerical results reveal that the inviscid flow solution appears to be a suitable predictor for the effectively and efficiently obtainable lift of a given airfoil configuration. The flap size affects the achievable lift, the accompanying drag, and the required flap deflection and actuation intensity. By controlling separation, the range of achievable lift coefficients is doubled without significant penalty in drag even when considering a safety margin for the maximum applicable incidence.
100

Biologically Inspired Legs and Novel Flow Control Valve Toward a New Approach for Accessible Wearable Robotics

Moffat, Shannon Marija 18 April 2019 (has links)
The Humanoid Walking Robot (HWR) is a research platform for the study of legged and wearable robots actuated with Hydro Muscles. The fluid operated HWR is representative of a class of biologically inspired, and in some aspects highly biomimetic robotic musculoskeletal appendages showing certain advantages in comparison to more conventional artificial limbs and braces for physical therapy/rehabilitation, assistance of daily living, and augmentation. The HWR closely mimics the human body structure and function, including the skeleton, ligaments, tendons, and muscles. The HWR can emulate close to human-like movements even when subjected to simplified control laws. One of the main drawbacks of this approach is the inaccessibility of an appropriate fluid flow management support system, in the form of affordable, lightweight, compact, and good quality valves suitable for robotics applications. To resolve this shortcoming, the Compact Robotic Flow Control Valve (CRFC Valve) is introduced and successfully proof-of-concept tested. The HWR added with the CRFC Valve has potential to be a highly energy efficient, lightweight, controllable, affordable, and customizable solution that can resolve single muscle action.

Page generated in 0.0863 seconds