• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental Study of Post-Dryout Heat Transferin Annuli with Flow Obstacles

Anghel, Ionut Gheorghe January 2011 (has links)
An experimental study on post dryout heat transfer regime in annuli with flow obstacles was conducted in the High-pressure Water Test (HWAT) loop at the Royal Institute of Technology in Stockholm, Sweden. An annulus consisting of two concentric heated pipes (12.7x24.3) mm, with total heated length equal to 3650 mm was employed as a test section. Three kinds of flow obstacles were used: pin-spacers, cylindrical obstacles and grid obstacles. The experiments performed in the test section with pin-spacers only were considered as the reference case. In two consecutive sets of runs, additional obstacles were placed inside the flow channel while keeping the pin spacers in the same positions. In that way the net effect of obstacles on heat transfer was measured. The experimental investigations were performed in a wide range of the operational conditions: mass flux (500-1750) kg/(m2s), inlet subcooling (10-40) K and system pressure (5-7) MPa. The wall superheat was measured at 88 different axial positions (40 on the inner tube and 48 on the outer tube) for the conditions mentioned above. A local heat transfer coefficient was calculated based on the measured annulus wall temperatures and the saturated fluid (water) properties. The results show an enhancement of the heat transfer coefficient downstream of flow obstacles. The most significant influence has been observed in case of pin spacers. This result is consistent with blockage area of various obstacles, which was the highest in case of pin spacers. The data obtained in more than 200 runs were compared with two pre-dryout and post-dryout correlations. The correlations show a slight over-prediction of the heat transfer coefficient in both pre-dryout and post-dryout regions. The thesis contains a detailed description of experimental procedures as well as an analysis of the results of measurements. / QC 20111024 / SKC: Post Dryout Regime
2

Flow Obstruction Effects on Heat Transfer in Channels at Supercritical and High Subcritical Pressures

Eter, Ahmad January 2016 (has links)
The objective of this thesis research is to improve our understanding of the flow obstacle effect on heat transfer at supercritical and high subcritical pressures by experimentally studying the effect of different obstacles on heat transfer in two vertical upward-flow test sections: a 3-rod bundle and an 8 mm ID tube. The heat transfer measurements cover the region of interest of the Canadian Super-critical Water Cooled Reactor (SCWR). A thorough analysis of the obstacle effect on supercritical heat transfer (SCHT) was performed. In the 3-rod bundle, two types of obstacles were employed: wire wraps and low-impact grid spacers. Wire wraps were found to be more effective than grid spacers to enhance the SCHT. In the tubular test section, obstacles appeared to suppress the heat transfer deterioration (HTD) or decrease its severity; obstacles also generally enhanced the SCHT both in the liquid-like and the gas- like region. The experiment in the tubular test section revealed that, at certain flow conditions (low mass flux, low inlet subcooling), flow obstacles can have an adverse impact on the SCHT. A criterion to predict the onset of this adverse effect was developed. At high subcritical pressures, obstacles increased the CHF and reduced the maximum post-CHF temperature. A comparison of the experimental data with prediction methods for the SCHT, single phase heat transfer, CHF and post-dryout heat transfer was performed. Lastly, a new correlation to predict the enhancement in SCHT due to obstacles was developed for heat transfer in the liquid-like and gas-like regions.

Page generated in 0.0381 seconds