Spelling suggestions: "subject:"follows:focusing"" "subject:"colors:focusing""
1 |
Control of emulsion drop production in flow focusing microfluidicsKim, Haejune 15 May 2009 (has links)
Generating droplets using flow-focusing microfluidics in multiphase flows has reached its limit that it cannot generate submicrometer droplets in size. Flow focusing geometry together with an electric field has been used to make smaller droplets in microchannels. The droplet size was controllable by the flow rate ratio as well as the electric field. The droplets size decreased as the voltage increased. A Taylor cone was formed to generate very fine droplets which were less than 1mμ in diameter. The tip made smaller droplets due to the tangential force by the electric field. A small inner flow rate and high electric field were required to form a stable Taylor cone in a DC electric field. The droplet size, however, was not stable at a small water flow rate because the flow rate was not as accuate as required. When I used a modified syringe pump with more accurate flow rate control, I was able to obtain a stable set of data. A small change in droplet size occurred at low voltage. The drop size changed dramatically, when the voltage was high enough. I also observed how an AC electric field affects the droplet size. The droplet size was not solely determined by the voltage. This is because of the imbalance of the supplied flow rate and the emitted flow rate. I also found that the droplet size is related to the tip position of the dispersed phase. The droplet size decreased as the tip stretched more. Typically, the microfluidic device generated monodispese droplets in narrow size distribution. It also generated a bigger droplet followed by a smaller one consecutively at low flow rate ratio of inner and outer fluid flow ()265.0/09.0≤≤oiQQ. To understand this instability of drop formation, a numerical calculation was conducted. The simulation results showed inside of the tip still pointed downstream after it generated a big droplet. Then, the tip generated another smaller droplet while the tip was stretched. Finally, the tip moved back and began a new cycle.
|
2 |
Control of emulsion drop production in flow focusing microfluidicsKim, Haejune 15 May 2009 (has links)
Generating droplets using flow-focusing microfluidics in multiphase flows has reached its limit that it cannot generate submicrometer droplets in size. Flow focusing geometry together with an electric field has been used to make smaller droplets in microchannels. The droplet size was controllable by the flow rate ratio as well as the electric field. The droplets size decreased as the voltage increased. A Taylor cone was formed to generate very fine droplets which were less than 1mμ in diameter. The tip made smaller droplets due to the tangential force by the electric field. A small inner flow rate and high electric field were required to form a stable Taylor cone in a DC electric field. The droplet size, however, was not stable at a small water flow rate because the flow rate was not as accuate as required. When I used a modified syringe pump with more accurate flow rate control, I was able to obtain a stable set of data. A small change in droplet size occurred at low voltage. The drop size changed dramatically, when the voltage was high enough. I also observed how an AC electric field affects the droplet size. The droplet size was not solely determined by the voltage. This is because of the imbalance of the supplied flow rate and the emitted flow rate. I also found that the droplet size is related to the tip position of the dispersed phase. The droplet size decreased as the tip stretched more. Typically, the microfluidic device generated monodispese droplets in narrow size distribution. It also generated a bigger droplet followed by a smaller one consecutively at low flow rate ratio of inner and outer fluid flow ()265.0/09.0≤≤oiQQ. To understand this instability of drop formation, a numerical calculation was conducted. The simulation results showed inside of the tip still pointed downstream after it generated a big droplet. Then, the tip generated another smaller droplet while the tip was stretched. Finally, the tip moved back and began a new cycle.
|
3 |
Hollow Hydrogel Cocoons for the Encapsulation of Therapeutic Cells Using a Microfluidic PlatformSoucy, Nicholas 18 December 2020 (has links)
Microencapsulation of stem cells in hydrogel for use in therapeutic applications has been shown to improve cell retention at the site of injuries due to their mechanical and immunoprotective properties. These microscale droplets (cocoons) can be produced at high throughputs within microfluidic channels. Currently, the ability for cells to egress hydrogel cocoons is under investigation. This egress can correlate with therapeutic efficacy, and so promoting or inhibiting the egress of cells can be a vital component of viable treatments. Previously, a second hydrogel layer was shown to reduce egress, but issues involving cell proliferation were unchanged. We propose a microfluidic process to encapsulate cells in two layers of thermoresponsive hydrogels, in which the inner core melts at physiological temperatures to form hollow cocoons that allow cells free motion inside the immunoprotective shell. We hypothesize that the open volume would increase cell viability and proliferation, without increasing cell egress due to the uninterrupted hydrogel shell.
In this project the encapsulation of NIH 3T3 cells in hollow agarose cocoons was achieved. 3T3 cells were first encapsulated in thermoreversible gelatin which were then re-encapsulated in agarose through the use of a flow-focusing microfluidic channel with on-chip mixing of two inlet flows to produce hollow cocoons. The production of these cocoons showed the potential of high throughput, monodisperse samples with future investment. Preliminary investigation in the behavior of the encapsulated cells showed that the cells maintain high viability over the course of 48 hours. There are early indications that the hollow nature of correctly formed cocoons can limit cell egress, and may allow for proliferation in the cocoon.
|
4 |
Response of Electrified Micro-Jets to Electrohydrodynamic PerturbationsYang, Weiwei 01 January 2014 (has links)
The breakup of liquid jets is ubiquitous with rich underpinning physics and widespread applications. The natural breakup of liquid jets originates from small ambient perturbations, which can grow exponentially until the amplitude as large as the jet radius is reached. For unelectrified inviscid jets, surface energy analysis shows that only the axisymmetric perturbation is possibly unstable, and this mode is referred as varicose instability. For electrified jets, the presence of surface charge enables additional unstable modes, among which the most common one is the whipping (or kink) instability that bends and stretches the charged jet that is responsible for the phenomena of electrospinning. A closer examination of the two instabilities suggests that due to mass conservation, the uneven jet stretching from whipping may translate into radial perturbations and trigger varicose instabilities. Although the varicose and whipping instabilities of electrified micro-jets have both been extensively studied separately, there is little attention paid to the combined effect of these two, which may lead to new jet breakup phenomena. This dissertation investigates the dynamic response of electrified jets under transverse electrohydrodynamic (EHD) perturbations which were introduced by exciters driven by alternating voltage of sweeping frequency. Three different jetting mechanisms are used to generate jets with various ranges of jet diameters: ~150 micrometer inertial jets from liquid pressurized through a small orifice, ~50 micrometer flow focused jets, and ~20 micrometer electrified Taylor-cone jets. The transverse perturbations enable systematic triggering of varicose and whipping instabilities, and consequently a wide range of remarkable phenomena emerge. For inertial jets with zero or low charge levels, only varicose instability is observable due to suppressed whipping instability. At modest charge levels, inertia jets can respond to the fundamental perturbation frequency as well as the second harmonic of the perturbation frequency. Highly charged jets such as fine jets generated from Taylor cones exhibit distinct behavior for different perturbation wavenumber x. Typical behavior include: whipping jets with superimposed varicose instability at small x, jet bifurcation from crossover of whipping and varicose instabilities at x~0.5, Coulombic fission owing to the surge of surface charge density as the slender liquid segments recover spherical shapes at x~0.7, and simple varicose mode near wave numbers of unity. The phenomena observed in this work may be explained by a linear model and rationalized by the phase diagram in the space of wave number and dimensionless charge levels. The experimental apparatus used in this dissertation is simple, non-intrusive, and scalable to a linear array of jets. The rich phenomena combined with the versatile apparatus may spawn new research directions such as regulated electrospinning, generating strictly monodisperse micro/nano droplets, and manufacturing of non-spherical particles from drying droplets that undergo controlled Coulombic fissions.
|
5 |
Desarrollo de nebulizadores neumáticos basados en las tecnologías Flow Focusing y Flow Blurring para su uso en técnicas analíticas basadas en plasma de acoplamiento inductivo (ICP-OES e ICP-MS)Almagro Fernández, Beatriz 15 July 2008 (has links)
No description available.
|
6 |
Conception et réalisation d'un système microfluidique pour la production de gouttes calibrées et leur encapsulation.He, P. 01 October 2009 (has links) (PDF)
La technologie de la microencapsulation comprend généralement deux procédés : les procédés de production de microgouttes/microémulsions et les procédés de leur encapsulation. A cause de difficultés de calibrer la taille de microgouttes, des microcapsules ont souvent une grande dispersion sur leur taille. La technologie microfluidique permet d'améliorer la monodispersité de microcapsules.<br />Cette thèse a pour objet la conception et la réalisation d'un système microfluidique pour la production de gouttes calibrées et leur encapsulation. La contribution de cette thèse consiste en trois aspects : le premier concerne les effets géométriques sur la formation de goutte ; le deuxième concerne la dynamique des écoulements, le comportement d'écoulement laminaire, les propriétés physico-chimiques des couples diphasiques sur la taille de gouttes, les lois corrélant la taille de gouttes. Troisièmement, un système microfluidique est conçu dans lequel le procédé complet de la microencapsulation est réalisé pour la fabrication de microcapsules monodisperses. Les perspectives d'applications sont nombreuses.
|
7 |
Aerosol Characterization and Analytical Modeling of Concentric Pneumatic and Flow Focusing Nebulizers for Sample IntroductionKashani, Arash 31 May 2011 (has links)
A concentric pneumatic nebulizer (CPN) and a custom designed flow focusing nebulizer (FFN) are characterized. As will be shown, the classical Nukiyama-Tanasawa and Rizk-Lefebvre models lead to erroneous size prediction for the concentric nebulizer under typical operating conditions due to its specific design, geometry, dimension and different flow regimes. The models are then modified to improve the agreement with the experimental results. The size prediction of the modified models together with the spray velocity characterization are used to determine the overall nebulizer efficiency and also employed as input to a new Maximum Entropy Principle (MEP) based model to predict joint size-velocity distribution analytically. The new MEP model is exploited to study the local variation of size-velocity distribution in contrast to the classical models where MEP is applied globally to the entire spray cross section. As will be demonstrated, the velocity distribution of the classical MEP models shows poor agreement with experiments for the cases under study. Modifications to the original MEP modeling are proposed to overcome this deficiency. In addition, the new joint size-velocity distribution agrees better with our general understanding of the drag law and yields realistic results.
|
8 |
Aerosol Characterization and Analytical Modeling of Concentric Pneumatic and Flow Focusing Nebulizers for Sample IntroductionKashani, Arash 31 May 2011 (has links)
A concentric pneumatic nebulizer (CPN) and a custom designed flow focusing nebulizer (FFN) are characterized. As will be shown, the classical Nukiyama-Tanasawa and Rizk-Lefebvre models lead to erroneous size prediction for the concentric nebulizer under typical operating conditions due to its specific design, geometry, dimension and different flow regimes. The models are then modified to improve the agreement with the experimental results. The size prediction of the modified models together with the spray velocity characterization are used to determine the overall nebulizer efficiency and also employed as input to a new Maximum Entropy Principle (MEP) based model to predict joint size-velocity distribution analytically. The new MEP model is exploited to study the local variation of size-velocity distribution in contrast to the classical models where MEP is applied globally to the entire spray cross section. As will be demonstrated, the velocity distribution of the classical MEP models shows poor agreement with experiments for the cases under study. Modifications to the original MEP modeling are proposed to overcome this deficiency. In addition, the new joint size-velocity distribution agrees better with our general understanding of the drag law and yields realistic results.
|
9 |
Micro-mousse : génération, écoulement et manipulationRaven, Jan-Paul 24 October 2007 (has links) (PDF)
Cette thèse se situe à la frontière de deux domaines : celui de la rhéologie des mousses et celui de la microfluidique. On présente comment créer une mousse dans un système microfluidique avec une taille minimale de bulle autour de 100 μm et on étudie son écoulement. Après un rappel de l'état de l'art en microfluidique biphasique et dans le domaine de l'écoulement de mousse 2D, on présente l'ensemble de techniques expérimentales qui permettent de produire le système microfluidique et d'imager l'écoulement résultant. Ensuite, on étudie la génération de mousse microfluidique avec la méthode du pincement liquide. On mesure la dépendance des propriétés de la mousse (fraction liquide, topologie) envers les paramètres de contrôle et la géométrie. Nous montrons que la rhéologie de l'écoulement est fortement non-linéaire. La relation pression-débit présente en effet un seuil, une loi de puissance et des discontinuités liés aux transitions de topologie. On met en évidence un effet rétroactif de l'écoulement dans le canal sur la formation de la mousse, qui entraîne un comportement dynamique très riche. On trouve notamment une oscillation entre différentes topologies reliée à une instabilité qui peut être de type advectif, stationnaire ou absolu. Finalement on étudie une méthode pour l'application de forces acoustiques sur un écoulement biphasique, afin de manipuler les bulles de la mousse depuis l'extérieur.
|
10 |
Property prediction of super-strong nanocellulose fibers / Förutsägning av egenskaper hos superstarka nanocellulosafibrerAbada, Maria, Fossum, Elin, Brandt, Louise, Åkesson, Anton January 2020 (has links)
The innovative technology behind production of strong biofilaments involves the process of spinning filaments from nanoparticles extracted from wood. These nanoparticles are called cellulose nanofibrils (CNFs). The spun filaments can have high mechanical properties, rivaling many other plant based materials, and could be an environmentally friendly replacement for many materials in the future such as fabrics and composites. Before mass production might be possible, the optimal dispersion properties must be determined for the intended use, with regard to concentration, method of oxidation (TEMPO-oxidation or carboxymethylation) and pretreatment through sonication and centrifugation. In this bachelor’s thesis attributes of spun filaments were investigated in order to find a correlation between mechanical properties and the effects of concentration, method of oxidation as well as sonication and centrifugation of the dispersions. The mechanical properties were also compared to the fibrils’ ability to entangle and align during flow-focusing. A variety of analytical methods: flow-stop, tensile testing, scanning electron microscopy (SEM) and wide angle X-ray scattering (WAXS) were implemented for the dispersions and filaments. The results from this study show that flow-stop analysis could be used to determine which CNF dispersions are spinnable and which are non-spinnable, along with which spinnable dispersion would yield the strongest filament. It was also concluded that crystallinity of fibrils affects the mechanical properties of filaments and that TCNFs are generally more crystalline than CMCs. Pretreatment through sonication and centrifugation seems to have a negative impact on spinnability and sonication in combination with low concentration seems to lead to non-spinnable conditions. On the other hand, sonicated dispersions seem to yield a greater number of samples without aggregates than non-sonicated ones. Aggregates, however, seem to only affect ultimate stress out of the measured mechanical properties. Furthermore, concentration and viscosity affect spinnability and CMC dispersions seem to yield thicker filaments than TCNF dispersions. However, due to lack of statistically validated data any definitive conclusions could not be drawn.
|
Page generated in 0.0392 seconds