41 |
Effects of pressure gradient on two-dimensional separated and reattached turbulent flowsShah, Mohammad Khalid 15 January 2009 (has links)
An experimental program is designed to study the salient features of separated and reattached flows in pressure gradients generated in asymmetric diverging and converging channels. The channels comprised a straight flat floor and a curved roof that was preceded and followed by straight parallel walls. Reference measurements were also made in a parallel-wall channel to facilitate the interpretation of the pressure gradient flows. A transverse square rib located at the start of convergence/divergence was used to create separation inside the channels. In order to simplify the interpretation of the relatively complex separated and reattached flows in the asymmetric converging and diverging channels, measurements were made in the plain converging and diverging channel without the rib on the channel wall. All the measurements were obtained using a high resolution particle image velocimetry technique.
The experiments without the ribs were conducted in the diverging channel at Reynolds number based on half channel depth (Reh) of 27050 and 12450 and in the converging channel at Reh = 19280. For each of these three test conditions, a high resolution particle image velocimetry technique (PIV) was used to conduct detailed velocity measurements in the upstream parallel section, within the converging and diverging section, and downstream of the converging and diverging sections. From these measurements, the boundary layer parameters and profiles of the mean velocities, turbulent quantities as well as terms in the transport equations for turbulent kinetic energy and Reynolds stresses were obtained to document the effects of pressure gradient on the flow. In the adverse pressure gradient case, the turbulent quantities were enhanced more significantly in the lower boundary layer than the upper boundary layer. On the other hand, favorable pressure gradient attenuated the turbulence levels and the effect was found to be similar on both the upper and the lower boundary layers.
For the separated and reattached flows in the converging, diverging and parallel-wall channels at Reh = 19440, 12420 and 15350, respectively. The Reynolds number based on the approach velocity and rib height was Rek 2700. From these measurements, profiles of the mean velocities, turbulent quantities and the various terms in the transport equations for turbulent kinetic energy and Reynolds stresses were also obtained. The flow dynamics in the upper boundary layer in the separated region and the early stages of flow redevelopment were observed to be insensitive to the pressure gradients. In the lower boundary layer, however, the flow dynamics were entirely dominated by the separated shear layer in the separated region as well as the early region of flow redevelopment. The effects of the separated shear layer diminished in the redevelopment region so that the dynamics of the flow were dictated by the pressure gradients.
The proper orthogonal decomposition (POD) was applied to educe the dominant large scale structures in the separated and reattached flows. These dominant scales were used to document structural differences between the canonical upstream flow and the flow field within the separated and redeveloping region. The contributions of these dominant structures to the dynamics of the Reynolds normal and shear stresses are also presented and discussed. It was observed that the POD recovers Reynolds shear stress more efficiently than the turbulent kinetic energy. The reconstruction reveals that large scales contribute more to the Reynolds shear stress than the turbulent kinetic energy.
|
42 |
Air-Water Bubbly Flows : Theory and ApplicationsChanson, Hubert Unknown Date (has links)
In turbulent water flows, large quantities of air bubbles are entrained at the free-surfaces. Practical applications of gas-liquid bubbly flows are found in Chemical, Civil, Environmental, Mechanical, Mining and Nuclear Engineering. Air-water flows are observed in small-scale as well as large-scale flow situations. Typical examples include thin circular jets used as mixing devices in chemical plants (Qw = 0.001 L/s, diameter = 1 mm) and spillway flows (Qw larger than 10,000 m3/s, flow thickness over 10 m). In each case, however, the interactions between the entrained air bubbles and the turbulence field are significant. The present manuscript regroups a collection of one book and 43 articles on the study of air bubble entrainment in turbulent flows. The work aims to gain a better understanding of the basic mechanisms of gas entrainment and the nteractions between entrained gas bubbles and the turbulence. It has been the purpose of the research work to assess critically the overall state of this field, to present new analysis and experimental results, to compare these with existing data, and to present new compelling conclusions regarding momentum and void fraction development of air-water gas-liquid bubbly flows. The manuscript presents a comprehensive analysis of the air entrainment processes in free-surface turbulent flows. The air-water flows are investigated as homogeneous mixtures with variable density. The variations of fluid density result from the non-uniform air bubble distributions and the turbulent diffusion process. Several types of air-water free-surface flows are studied : plunging jet flows, open channel flows, and turbulent water jets discharging into air.
|
43 |
Projekt zavedení štíhlé výroby ve vybraném výrobním úseku / The Project of Introducing Lean Production in Selected Production AreaGembická, Martina January 2018 (has links)
The diploma thesis focuses on the implementation of lean production into the selected production section of EKOM company. In the analytical part, the production company will be characterized and the current state of production in the selected section will be described. The practical part of the thesis will be based on the theoretical part and there will be proposals for implementation of lean production elements.
|
44 |
Overview of the Computational Fluid Dynamic Analyses of the Virginia Tech/NASA BeVERLI Hill ExperimentsOzoroski, Thomas Alexander 13 September 2022 (has links)
Computational fluid dynamics (CFD) methods and schemes have been evolving at a rate that significantly outpaces the equipment needed to readily utilize them at scale. This lack of computational resources has resulted in an increased reliance on turbulence models and the need to know where turbulence models do well, where they do poorly, and where/how they can be improved upon. The BeVERLI Hill experiments aim to address this issue by providing experimental data that achieves a completeness level of three, which has never been done for this type of project. The experimental data collected is studied along side computational results from CFD solvers in order to help address and answer these questions. This paper provides an overview of the current computational status of the BeVERLI Hill project at Virginia Tech. The computational grids used for the analyses are presented such that the reader can gain an appreciation for the modeling techniques and methods being implemented. An analysis of the numerical error associated with the computational results is presented to provide confidence in the results obtained. An in-depth analysis will be presented that shows the results for the various grid levels that are being utilized to determine any grid based effects that are occurring within the solutions. Then, an analysis of the influence of the Reynolds numbers being run is shown. An investigation into the differences between the two different solvers being utilized, SENSEI and Fluent, is shown. An analysis of the effects on the solutions due to numerical limiters is presented to assist in increasing the computational efficiency of the workflow while not adversely affecting the results. Finally, an analysis of the differences between the two turbulence models being utilized is presented. Computational results are compared to available experimentally obtained data to further motivate and identify flow features. / Master of Science / An analysis has been done with high-fidelity computational fluid dynamic solvers that are utilized in order to solve for the flow over a three-dimensional bump called BeVERLI. An analysis is provided that discusses the use of different computational meshes, solvers, turbulence models, and numerical limiters within the computational tools to characterize the flow over the bump. An analysis of the estimated amount of numerical error within the solutions is provided along with a comparison to experimentally obtained data.
|
45 |
Aspects of premixed tubulent combustionChew, Tuan Chiong January 1988 (has links)
No description available.
|
46 |
Contaminant spreading in composite flowsPurnama, Anton January 1988 (has links)
No description available.
|
47 |
Bifurcation in Lapwood convectionImpey, M. D. January 1988 (has links)
No description available.
|
48 |
In line fibre optic laser Doppler velocimeter using Bragg grating interferometric filters as frequency to intensity transducersChehura, Edmon January 2002 (has links)
No description available.
|
49 |
Separated continuous linear programs : theory and algorithmsPullan, Malcolm Craig January 1992 (has links)
No description available.
|
50 |
A study of inside money in a dynamic general equilibrium frameworkLeao, Emanuel Claudio Reis Carvalho January 1999 (has links)
No description available.
|
Page generated in 0.0328 seconds