Spelling suggestions: "subject:"fue gas desulfurization"" "subject:"flux gas desulfurization""
1 |
Factors influencing Gypsum Crystal Morphology within a Flue Gas Desulfurization VesselLewis, Kinsey M (Kinsey Morgan) 14 December 2013 (has links)
Flue gas desulfurization (FGD) is utilized by the coal-powered generating industry to safely eliminate sulfur dioxide. A FGD vessel (scrubber) synthetically creates gypsum crystals by combining limestone (CaCO3), SO2 flue gas, water and oxygen resulting in crystalline gypsum (CaSO4 ∙ 2H2O), which can be sold for an economic return. Flat disk-like crystals, opposed to rod-like crystals, are hard to dewater, lowering economic return. The objectives were to investigate the cause of varying morphologies, understand the environment of precipitation, as well as identify correlations between operating conditions and resulting unfavorable gypsum crystal growth. Results show evidence supporting airborne impurities due to the onsite coal pile, the abundance and size of CaCO3 and high Ca:SO4 ratios within the scrubber as possible factors controlling gypsum crystal morphology. In conclusion, regularly purging the system and incorporating a filter on the air intake valve will provide an economic byproduct avoiding costly landfill deposits.
|
2 |
Pilot-Scale Demonstration of hZVI Process for Treating Flue Gas Desulfurization Wastewater at Plant Wansley, Carrollton, GAPeddi, Phani 1987- 14 March 2013 (has links)
The hybrid Zero Valent Iron (hZVI) process is a novel chemical treatment platform that has shown great potential in our previous bench-scale tests for removing selenium, mercury and other pollutants from Flue Gas Desulfurization (FGD) wastewater. This integrated treatment system employs new iron chemistry to create highly reactive mixture of Fe^0, iron oxides (FeOx) and various forms of Fe (II) for the chemical transformation and mineralization of various heavy metals in water. To further evaluate and develop the hZVI technology, a pilot-scale demonstration had been conducted to continuously treat 1-2 gpm of the FGD wastewater for five months at Plant Wansley, a coal-fired power plant of Georgia Power. This demonstrated that the scaled-up system was capable of reducing the total selenium (of which most was selenate) in the FGD wastewater from over 2500 ppb to below 10 ppb and total mercury from over 100 ppb to below 0.01 ppb. This hZVI system reduced other toxic metals like Arsenic (III and V), Chromium (VI), Cadmium (II), Lead (II) and Copper (II) from ppm level to ppb level in a very short reaction time. The chemical consumption was estimated to be approximately 0.2-0.4 kg of ZVI per 1 m^3 of FGD water treated, which suggested the process economics could be very competitive. The success of the pilot test shows that the system is scalable for commercial application. The operational experience and knowledge gained from this field test could provide guidance to further improvement of technology for full scale applications. The hZVI technology can be commercialized to provide a cost-effective and reliable solution to the FGD wastewater and other metal-contaminated waste streams in various industries. This technology has the potential to help industries meet the most stringent environmental regulations for heavy metals and nutrients in wastewater treatment.
|
3 |
A study of SO <inf>2</inf>removal with char from flash arbonization process at Ohio UniversityLee, Hsiung Hseng January 1986 (has links)
No description available.
|
4 |
Evaluation of Flue Gas Desulfurization Gypsum as a Novel Precipitant for the Removal and Recovery of Phosphorus from Anaerobic Digestion EffluentKhalaf, Adam January 2016 (has links)
No description available.
|
5 |
Coal-fired power plant flue gas desulfurization wastewater treatment using constructed wetlandsParedez, Jose Miguel January 1900 (has links)
Master of Science / Department of Civil Engineering / Natalie Mladenov / In the United States approximately 37% of the 4 trillion kWh of electricity is generated annually by combusting coal (USEPA, 2013). The abundance of coal, ease of storage, and transportation makes it affordable at a global scale (Ghose, 2009). However, the flue gas produced by combusting coal affects human health and the environment (USEPA, 2013). To comply with federal regulations coal-fired power plants have been implementing sulfur dioxide scrubbing systems such as flue gas desulfurization (FGD) systems (Alvarez-Ayuso et al., 2006). Although FGD systems have proven to reduce atmospheric emissions they create wastewater containing harmful pollutants. Constructed wetlands are increasingly being employed for the removal of these toxic trace elements from FGD wastewater.
In this study the effectiveness of using a constructed wetland treatment system was explored as a possible remediation technology to treat FGD wastewater from a coal-fired power plant in Kansas. To simulate constructed wetlands, a continuous flow-through column experiment was conducted with undiluted FGD wastewater and surface sediment from a power plant in Kansas. To optimize the performance of a CWTS the following hypotheses were tested: 1) decreasing the flow rate improves the performance of the treatment wetlands due to an increase in reaction time, 2) the introduction of microbial cultures (inoculum) will increase the retention capacity of the columns since constructed wetlands improve water quality through biological process, 3) the introduction of a labile carbon source will improve the retention capacity of the columns since microorganisms require an electron donor to perform life functions such as cell maintenance and synthesis. Although the FGD wastewater collected possessed a negligible concentration of arsenic, the mobilization of arsenic has been observed in reducing
sediments of wetland environments. Therefore, constructed wetlands may also represent an environment where the mobilization of arsenic is possible. This led us to test the following hypothesis: 4) Reducing environments will cause arsenic desorption and dissolution causing the mobilization of arsenic.
As far as removal of the constituents of concern (arsenic, selenium, nitrate, and sulfate) in the column experiments, only sulfate removal increased as a result of decreasing the flow rate by half (1/2Q). In addition, sulfate-S exhibited greater removal as a result of adding organic carbon to the FGD solution when compared to the control (at 1/2Q). Moderate selenium removal was observed; over 60% of selenium in the influent was found to accumulate in the soil.
By contrast, arsenic concentrations increased in the effluent of the 1/2Q columns, most likely by dissolution and release of sorbed arsenic. When compared to the control (at 1/2Q), arsenic dissolution decreased as a result of adding inoculum to the columns. Dissolved arsenic concentrations in the effluent of columns with FGD solution amended with organic carbon reached 168 mg/L. These results suggest that native Kansas soils placed in a constructed wetland configuration and amended with labile carbon do possess an environment where the mobilization of arsenic is possible.
|
6 |
Arsenic and Selenium Distribution in Coal-Fired Plant SamplesNorris, Pauline Rose Hack 01 May 2009 (has links)
Arsenic and selenium distributions in coal-fired plant samples are studied. This research includes arsenic and selenium concentrations in samples of coal, fly ash, bottom ash, economizer ash, Flue Gas Desulfurization (FGD) slurry and flue gas taken from four power plants with the goal being to examine the distribution of these metals in these materials and calculate a materials balance for the system. All samples were analyzed using ICP-ES.
This research shows that 60-80% of the arsenic in coal-fired plant samples will be associated with the fly ash. Approximately 35-55% of the selenium will be associated with the fly ash and approximately 30-40% will be associated with the FGD slurry materials. The amount of arsenic and selenium present in the flue gases escaping the stack is very little, 6-7% or less.
Hopefully, research in this area will be helpful when setting emissions limits, identifying and disposing of hazardous wastes and improving air pollution control devices for maximum metal removal.
|
7 |
Evaluating the constituent leaching from flue gas desulfurization gypsum (FGDG) under different leaching conditions, its geochemical interactions with main soil constituents and identifying potential beneficial applicationsKoralegedara, Nadeesha H. 30 September 2016 (has links)
No description available.
|
8 |
Novel Regenerable Adsorbents for Wastewater Treatment from Wet Flue Gas ScrubbersSanghavi, Urvi January 2016 (has links)
No description available.
|
9 |
Modeling and optimization of a cross-flow, moving-bed, flue gas desulfurization reactorDuespohl, Dale W. January 1995 (has links)
No description available.
|
10 |
Preliminary investigation on flue gas desulfurization in an in-duct spray dryer using condensation aerosolsChang, Sen-min January 1991 (has links)
No description available.
|
Page generated in 0.1125 seconds