• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • Tagged with
  • 15
  • 15
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Parallel computational and experimental studies of crystal growth

Braybrook, Alison Louise January 2002 (has links)
No description available.
2

Modelling the effect of growth envirnoment on the crystallisation of molecular organic compounds

Walker, Elaine M. January 1997 (has links)
No description available.
3

Fractal Aggregation Growth and the Surrounding Diffusion Field

Miyashita, Satoru, Saito, Yukio, Uwaha, Makio 01 October 2005 (has links)
No description available.
4

Factors influencing Gypsum Crystal Morphology within a Flue Gas Desulfurization Vessel

Lewis, Kinsey M (Kinsey Morgan) 14 December 2013 (has links)
Flue gas desulfurization (FGD) is utilized by the coal-powered generating industry to safely eliminate sulfur dioxide. A FGD vessel (scrubber) synthetically creates gypsum crystals by combining limestone (CaCO3), SO2 flue gas, water and oxygen resulting in crystalline gypsum (CaSO4 ∙ 2H2O), which can be sold for an economic return. Flat disk-like crystals, opposed to rod-like crystals, are hard to dewater, lowering economic return. The objectives were to investigate the cause of varying morphologies, understand the environment of precipitation, as well as identify correlations between operating conditions and resulting unfavorable gypsum crystal growth. Results show evidence supporting airborne impurities due to the onsite coal pile, the abundance and size of CaCO3 and high Ca:SO4 ratios within the scrubber as possible factors controlling gypsum crystal morphology. In conclusion, regularly purging the system and incorporating a filter on the air intake valve will provide an economic byproduct avoiding costly landfill deposits.
5

Growth modes in two-dimensional heteroepitaxy on an elastic substrate

Katsuno, Hiroyasu, Uemura, Hideaki, Uwaha, Makio, Saito, Yukio 15 February 2005 (has links)
No description available.
6

The effects of different synthesis conditions on sodalite crystal morphology

Al-Azmi, Radhi January 2001 (has links)
No description available.
7

Water vapour permeability of bio-based polymers

Duan, Zhouyang January 2013 (has links)
This project investigates the moisture barrier properties of bio-based polymers and ways of improving them. The first section addresses the effect of crystallinity on the water permeability of poly(lactic acid) (PLA). The second section investigates PLA/talc composites and PLA/ montmorillonite nanocomposites. The third section is focused on a new polymer, polybutylene succinate (PBS), and its nanocomposites with montmorillonite. In the first section, the water vapour transmission rates (WVTR) through samples of polylactic acid of different crystallinities have been measured. Three different grades of commercial PLA were used with different ratios of L-lactide and D-lactide to give a range of crystallinities from 0 to 50%. Sheets of PLA were prepared by melt compounding followed by compression moulding and annealing at different temperatures and for different times to give the range of crystallinities required. Crystallinity was measured by differential scanning calorimetry (DSC) and the morphology of the samples was observed under crossed polars in a transmitted light microscope. Water vapour transmission rates through the films were measured at 38°C and at a relative humidity of 90%. It was found that the measured values of WVTR decreased linearly with increasing crystallinity of the PLA from 0 to 50%. The results are discussed in terms of the effect of crystallinity on solubility and shown to fit the tortuous path model. The model was also successfully used to explain published data on water permeability of polyethylene terephthalate. In the second section, a series of PLA/talc composites and PLA/ montmorillonite nanocomposites were prepared by melt compounding followed by compression moulding. The morphologies of the composites were investigated using transmission electron microscopy (TEM) and wide-angle X-ray diffraction (WAXD) and it was found that the fillers were well dispersed in the polymer matrix. The average aspect ratio of the compounded talc was found to be 8, and that of the nanoclay was found to be 50. Water vapour transmission rates (WVTR) through the films were measured at 38°C and at a relative humidity of 90%. It was found that the measured values of WVTR decreased with increasing filler content and the results gave good agreement with predictions from the Nielsen tortuous path model. In the third section, PBS/ montmorillonite nanocomposites were prepared by melt compounding followed by compression moulding. The melting and crystallisation behaviour of the pure PBS samples were investigated using differential scanning calorimetry (DSC) and cross polarised optical microscopy. A slight decrease of the degree of crystallinity was found in PBS containing 5% nanoclay. The morphology of the composites was investigated using transmission electron microscopy (TEM) and wide-angle X-ray diffraction (WAXD) and it was confirmed that that composite structures were intercalated. Water vapour transmission rates (WVTR) through the PBS sheets were measured using a MOCON Permatran-W®398. The measured values of WVTR decreased with increasing nanoclay content. However, the experimental values were all higher than the values predicted by the Nielsen tortuosity model. This result shows that in the case of PBS, which is a highly crystalline polymer, the nanoclay is not as well dispersed and is not as effective in reducing water vapour permeability as in the case of PLA.
8

The effect of surfactant on the morphology of methane/propane clathrate hydrate crystals

Yoslim, Jeffry 05 1900 (has links)
Considerable research has been done to improve hydrate formation rate. One of the ideas is to introduce mechanical mixing which later tend to complicate the design and operation of the hydrate formation processes. Another approach is to add surfactant (promoter) that will improve the hydrate formation rate and also its storage capacity to be closer to the maximum hydrate storage capacity. Surfactant is widely known as a substance that can lower the surface or interfacial tension of the water when it is dissolved in it. Surfactants are known to increase gas hydrate formation rate, increase storage capacity of hydrates and also decrease induction time. However, the role that surfactant plays in hydrate crystal formation is not well understood. Therefore, understanding of the mechanism through morphology studies is one of the important aspects to be studied so that optimal industrial processes can be designed. In the present study the effect of three commercially available anionic surfactants which differ in its alkyl chain length on the formation/dissociation of hydrate from a gas mixture of 90.5 % methane – 9.5% propane mixture was investigated. The surfactants used were sodium dodecyl sulfate (SDS), sodium tetradecyl sulfate (STS), and sodium hexadecyl sulfate (SHS). Memory water was used and the experiments for SDS were carried out at three different degrees of under-cooling and three different surfactant concentrations. In addition, the effect of the surfactant on storage capacity of gas into hydrate was assessed. The morphology of the growing crystals and the gas consumption were observed during the experiments. The results show that branches of porous fibre-like crystals are formed instead of dendritic crystals in the absence of any additive. In addition, extensive hydrate crystal growth on the crystallizer walls is observed. Also a “mushy” hydrate instead of a thin crystal film appears at the gas/water interface. Finally, the addition of SDS with concentration range between 242ppm – 2200ppm (ΔT =13.10C) was found to increase the mole consumption for hydrate formation by 14.3 – 18.7 times. This increase is related to the change in hydrate morphology whereby a more porous hydrate forms with enhanced water/gas contacts.
9

THE EFFECT OF SURFACTANT ON THE MORPHOLOGY OF METHANE/PROPANE CLATHRATE HYDRATE CRYSTALS.

Yoslim, Jeffry, Englezos, Peter 07 1900 (has links)
In the present study the effect of one commercially available anionic surfactant on the formation/dissociation of hydrate from a gas mixture of 90.5 % methane – 9.5% propane mixture was investigated. Surfactants are known to increase gas hydrate formation rate. Memory water was used and the experiments were carried out at three different degrees of undercooling and two different surfactant concentrations. In addition, the effect of the surfactant on storage capacity of gas into hydrate was assessed. The morphology of the growing crystals and the gas consumption were observed during the experiments. The results show that branches of porous fibre-like crystals are formed instead of dendritic crystals in the absence of any additive. Finally, the addition of 2200 ppm of SDS was found to increase the mole consumption for hydrate formation by 4.4 times.
10

The effect of surfactant on the morphology of methane/propane clathrate hydrate crystals

Yoslim, Jeffry 05 1900 (has links)
Considerable research has been done to improve hydrate formation rate. One of the ideas is to introduce mechanical mixing which later tend to complicate the design and operation of the hydrate formation processes. Another approach is to add surfactant (promoter) that will improve the hydrate formation rate and also its storage capacity to be closer to the maximum hydrate storage capacity. Surfactant is widely known as a substance that can lower the surface or interfacial tension of the water when it is dissolved in it. Surfactants are known to increase gas hydrate formation rate, increase storage capacity of hydrates and also decrease induction time. However, the role that surfactant plays in hydrate crystal formation is not well understood. Therefore, understanding of the mechanism through morphology studies is one of the important aspects to be studied so that optimal industrial processes can be designed. In the present study the effect of three commercially available anionic surfactants which differ in its alkyl chain length on the formation/dissociation of hydrate from a gas mixture of 90.5 % methane – 9.5% propane mixture was investigated. The surfactants used were sodium dodecyl sulfate (SDS), sodium tetradecyl sulfate (STS), and sodium hexadecyl sulfate (SHS). Memory water was used and the experiments for SDS were carried out at three different degrees of under-cooling and three different surfactant concentrations. In addition, the effect of the surfactant on storage capacity of gas into hydrate was assessed. The morphology of the growing crystals and the gas consumption were observed during the experiments. The results show that branches of porous fibre-like crystals are formed instead of dendritic crystals in the absence of any additive. In addition, extensive hydrate crystal growth on the crystallizer walls is observed. Also a “mushy” hydrate instead of a thin crystal film appears at the gas/water interface. Finally, the addition of SDS with concentration range between 242ppm – 2200ppm (ΔT =13.10C) was found to increase the mole consumption for hydrate formation by 14.3 – 18.7 times. This increase is related to the change in hydrate morphology whereby a more porous hydrate forms with enhanced water/gas contacts.

Page generated in 0.0922 seconds