Spelling suggestions: "subject:"fue gas recirculation"" "subject:"flux gas recirculation""
1 |
The Composition and Morphology of Coal Ash Deposits Collected in an Oxy-Fuel, Pulverized Coal ReactorStimpson, Curtis K. 31 May 2012 (has links) (PDF)
Coal ash deposits were collected in a 160 kWth, down-fired oxy-coal reactor under staged and unstaged conditions for four different coals (PRB, Gatling, Illinois #6, and Mahoning). Concentration measurements of carbon, oxygen, sodium, magnesium, aluminum, silicon, phosphorus, sulfur, chlorine, potassium, calcium, titanium, chromium, manganese, iron, nickel, strontium, and barium were gathered from each deposit sample using scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS). Backscattered electron micrographs for each deposit sample were analyzed to gather morphological data. Particle size and shape were studied for each deposit collected. The average particle sizes of the particles in upstream deposits were much larger than the average particle sizes of the downstream deposits. The downstream deposits consisted primarily of spherical particles while the upstream deposits consisted of round, irregular polygonal, and porous particles. Deposit particles are believed to have deposited at all stages of burnout; those depositing early during pyrolysis may have continued to react after deposition. Element maps for the aforementioned elements were collected with SEM-EDS and analyzed to quantify both average composition and composition of individual particles. These values were compared to ASTM ash analyses performed for each coal and ash collected from the flue gas stream with a cyclonic particle separator. It was found that sulfur concentrations of deposits do not correlate with corresponding sulfur concentrations of the coal. Comparison of similar experiments performed with air-combustion show that oxy-combustion deposits contain about twice as much sulfur as air-combustion deposits when burning the same coal. Deposition propensity of each coal was also examined, and the PRB and Gatling coals were found to have a moderately high deposition propensity whereas the deposition propensity of the Mahoning and Illinois #6 coals was fairly low.
|
2 |
Vliv vnitřní recirkulace spalin na charakteristické parametry spalování / The influence of the furnace gas recirculation on characteristic parameters of the combustion processMacenauerová, Tereza January 2015 (has links)
This thesis deals with the evaluation of emissions of NOx and CO formed during the combustion process when the burner utilizing fuel staging and internal flue gas recirculation is used. In the theoretical part the NOx formation mechanisms and methods used to suppress their formation are described. This is followed with the currently valid legislation in the Czech Republic in terms of the emission limits for NOx and CO in stationary sources. In the work, combustion tests were performed at the burners testing facility at UPEI BUT. The tests revealed that the most important parameters, which influence the NOx formation, are fuel staging, increasing combustion air excess and the utilization of new equipment that induces the flue gas to be drawn back into the burner. The equipment is installed in the burner’s air channel. The dependence of flue gas temperature, heat flux to the combustion chamber’s section walls and in-flame temperatures distribution in the horizontal symmetry plane of the combustion chamber on various parameters were investigated. The parameters included the geometry of the equipment for flue gas recirculation, primary/secondary ratio, geometry of nozzles for secondary fuel supply, tangential orientation of these nozzles towards the burner axis, and the excess of combustion air.
|
Page generated in 0.093 seconds