Spelling suggestions: "subject:"flugzeuglaserscannerdaten"" "subject:"laserscanning""
1 |
Automatische Extraktion von 3D-Baumparametern aus terrestrischen Laserscannerdaten / Automatic extraction of 3D tree parameters from terrestrial laser scanner point cloudsBienert, Anne 06 August 2013 (has links) (PDF)
Ein großes Anwendungsgebiet des Flugzeuglaserscannings ist in Bereichen der Forstwirtschaft und der Forstwissenschaft zu finden. Die Daten dienen flächendeckend zur Ableitung von digitalen Gelände- und Kronenmodellen, aus denen sich die Baumhöhe ableiten lässt. Aufgrund der Aufnahmerichtung aus der Luft lassen sich spezielle bodennahe Baumparameter wie Stammdurchmesser und Kronenansatzhöhe nur durch Modelle schätzen. Der Einsatz terrestrischer Laserscanner bietet auf Grund der hochauflösenden Datenakquisition eine gute Ergänzung zu den Flugzeuglaserscannerdaten. Inventurrelevante Baumparameter wie Brusthöhendurchmesser und Baumhöhe lassen sich ableiten und eine Verdichtung von digitalen Geländemodellen durch die terrestrisch erfassten Daten vornehmen. Aufgrund der dichten, dreidimensionalen Punktwolken ist ein hoher Dokumentationswert gegeben und eine Automatisierung der Ableitung der Geometrieparameter realisierbar.
Um den vorhandenen Holzvorrat zu kontrollieren und zu bewirtschaften, werden in periodischen Zeitabständen Forstinventuren auf Stichprobenbasis durchgeführt. Geometrische Baumparameter, wie Baumhöhe, Baumposition und Brusthöhendurchmesser, werden gemessen und dokumentiert. Diese herkömmliche Erfassung ist durch einen hohen Arbeits- und Zeitaufwand gekennzeichnet. Aus diesem Grund wurden im Rahmen dieser Arbeit Algorithmen entwickelt, die eine automatische Ableitung der geometrischen Baumparameter aus terrestrischen Laserscannerpunktwolken ermöglichen. Die Daten haben neben der berührungslosen und lichtunabhängigen Datenaufnahme den Vorteil einer objektiven und schnellen Parameterbestimmung. Letztendlich wurden die Algorithmen in einem Programm zusammengefasst, das neben der Baumdetektion eine Bestimmung der wichtigsten Parameter in einem Schritt realisiert. An Datensätzen von drei verschiedenen Studiengebieten werden die Algorithmen getestet und anhand manuell gewonnener Baumparameter validiert.
Aufgrund der natürlich gewachsenen Vegetationsstruktur sind bei Aufnahmen von einem Standpunkt gerade im Kronenraum Abschattungen vorhanden. Durch geeignete Scankonfigurationen können diese Abschattungen minimiert, allerdings nicht vollständig umgangen werden. Zusätzlich ist der Prozess der Registrierung gerade im Wald mit einem zeitlichen Aufwand verbunden. Die größte Schwierigkeit besteht in der effizienten Verteilung der Verknüpfungspunkte bei dichter Bodenvegetation. Deshalb wird ein Ansatz vorgestellt, der eine Registrierung über die berechneten Mittelpunkte der Brusthöhendurchmesser durchführt. Diese Methode verzichtet auf künstliche Verknüpfungspunkte und setzt Mittelpunkte von identischen Stammabschnitten in beiden Datensätzen voraus. Dennoch ist die größte Unsicherheit in der Z-Komponente der Translation zu finden. Eine Methode unter Verwendung der Lage der Baumachsen sowie mit einem identischen Verknüpfungspunkt führt zu besseren Ergebnissen, da die Datensätze an dem homologen Punkt fixiert werden. Anhand eines Studiengebietes werden die Methoden mit den herkömmlichen Registrierungsverfahren über homologe Punkte verglichen und analysiert. Eine Georeferenzierung von terrestrischen Laserscannerpunktwolken von Waldbeständen ist aufgrund der Signalabschattung der Satellitenpositionierungssysteme nur bedingt und mit geringer Genauigkeit möglich. Deshalb wurde ein Ansatz entwickelt, um Flugzeuglaserscannerdaten mit terrestrischen Punktwolken allein über die Kenntnis der Baumposition und des vorliegenden digitalen Geländemodells zu verknüpfen und zusätzlich das Problem der Georeferenzierung zu lösen.
Dass ein terrestrischer Laserscanner nicht nur für Forstinventuren gewinnbringend eingesetzt werden kann, wird anhand von drei verschiedenen Beispielen beleuchtet. Neben der Ableitung von statischen Verformungsstrukturen an Einzelbäumen werden beispielsweise auch die Daten zur Bestimmung von Vegetationsmodellen auf Basis von Gitterstrukturen (Voxel) zur Simulation von turbulenten Strömungen in und über Waldbeständen eingesetzt. Das aus Laserscannerdaten abgeleitete Höhenbild einer Rinde führt unter Verwendung von Bildverarbeitungsmethoden (Texturanalyse) zur Klassifizierung der Baumart.
Mit dem terrestrischen Laserscanning ist ein interessantes Werkzeug für den Einsatz im Forst gegeben. Bestehende Konzepte der Forstinventur können erweiterte werden und es eröffnen sich neue Felder in forstwirtschaftlichen und forstwissenschaftlichen Anwendungen, wie beispielsweise die Nutzung eines Scanners auf einem Harvester während des Erntevorganges. Mit der stetigen Weiterentwicklung der Laserscannertechnik hinsichtlich Gewicht, Reichweite und Geschwindigkeit wird der Einsatz im Forst immer attraktiver. / An important application field of airborne laser scanning is forestry and the science of forestry. The captured data serve as an area-wide determination of digital terrain and canopy models, with a derived tree height. Due to the nadir recording direction, near-ground tree parameters, such as diameter at breast height (dbh) and crown base height, are predicted using forest models. High resolution terrestrial laser scanner data complements the airborne laser scanner data. Forest inventory parameters, such as dbh and tree height can be derived directly and digital terrain models are created. As a result of the dense three dimensional point clouds captured, a high level of detail exists, and a high degree of automation of the determination of the parameters is possible.
To control and manage the existing stock of wood, forest inventories are carried out at periodic time intervals, on the base of sample plots. Geometric tree parameters, such as tree height, tree position and dbh are measured and documented. This conventional data acquisition is characterised by a large amount of work and time. Because of this, algorithms are developed to automatically determine geometric tree parameters from terrestrial laser scanner point clouds. The data acquisition enables an objective and fast determination of parameters, remotely, and independent of light conditions. Finally the majority of the algorithms are combined into a single program, allowing tree detection and the determination of relevant parameters in one step. Three different sample plots are used to test the algorithms. Manually measured tree parameters are also used to validate the algorithms.
The natural vegetation structure causes occlusions inside the crown when scanning from one position. These scan shadows can be minimized, though not completely avoided, via an appropriate scan configuration. Additional the registration process in forest scenes is time-consuming. The largest problem is to find a suitable distribution of tie points when dense ground vegetation exists. Therefore an approach is introduced that allows data registration with the determined centre points of the dbh. The method removes the need for artificial tie points. However, the centre points of identical stem sections in both datasets are assumed. Nevertheless the biggest uncertainness is found in the Z co-ordinate of the translation. A method using the tree axes and one homologous tie point, which fixes the datasets, shows better results. The methods are compared and analysed with the traditional registration process with tie points, using a single study area. Georeferencing of terrestrial laser scanner data in forest stands is problematic, due to signal shadowing of global navigation satellite systems. Thus an approach was developed to register airborne and terrestrial laser scanner data, taking the tree positions and the available digital terrain model.
With the help of three examples the benefits of applying laser scanning to forest applications is shown. Besides the derivation of static deformation structures of single trees, the data is used to determine vegetation models on the basis of a grid structure (voxel space) for simulation of turbulent flows in and over forest stands. In addition, the derived height image of tree bark using image processing methods (texture analysis) can be used to classify the tree species.
Terrestrial laser scanning is a valuable tool for forest applications. Existing inventory concepts can be enlarged, and new fields in forestry and the science of forestry are established, e. g. the application of scanners on a harvester. Terrestrial laser scanners are becoming increasingly important for forestry applications, caused by continuous technological enhancements that reduce the weight, whilst increasing the range and the data rate.
|
2 |
Analyse von full-waveform Flugzeuglaserscannerdaten zur volumetrischen Repräsentation in UmweltanwendungenRichter, Katja 05 December 2018 (has links)
Wissenschaftliche Untersuchungen von terrestrischen und aquatischen Ökosystemen erfordern präzise Informationen über die dreidimensionale Struktur des ökologischen Systems. Full-waveform Flugzeuglaserscannerdaten eignen sich hervorragend zur Charakterisierung von Ökosystemen und bilden eine ideale Basis für die vollständige volumetrische Repräsentation der Vegetations- und Gewässerstruktur in einem Voxelraum. Die Voxelattribute werden dabei aus der digitalisierten Wellenform abgeleitet. Jeder emittierte Laserpuls wird von Dämpfungseffekten beeinflusst, die durch Teilreflexionen auf seinem Weg durch die unterschiedlichen Vegetations- oder Wasserschichten entstehen. Dadurch ist die Struktur im unteren Bereich der empfangenen Rohsignale unterrepräsentiert.
Die im Rahmen dieser Arbeit entwickelten innovativen Methoden zur Analyse von full-waveform Daten ermöglichen die Generierung einer radiometrisch korrigierten Voxelraumrepräsentation. Voraussetzung dafür ist die numerisch stabile Rekonstruktion des effektiven differentiellen Rückstreuquerschnitts mit geeigneten Entfaltungs- und Regularisierungsverfahren. Das Kernstück der Analyse bildet die Beschreibung der Signaldämpfung mit Hilfe geeigneter Modelle. Auf Grundlage dieser Modelle wurden neuartige Korrekturverfahren zur Kompensation der Signaldämpfung erarbeitet, wobei der Korrekturterm direkt aus dem differentiellen Rückstreuquerschnitt abgeleitet wird. Die Grundidee der entwickelten Methode ist das schrittweise Anheben der Signalintensität in Abhängigkeit von der individuellen Historie jedes Laserpulses.
Die Resultate der vorliegenden Arbeit tragen dazu bei, die in full-waveform Daten enthaltenen Informationen über die Vegetations- und Gewässerstruktur zugänglich zu machen. Weiterhin zeigen die hier präsentierten Ergebnisse, dass die Limitierungen bestehender Auswertemethoden, welche weitgehend auf die Extraktion diskreter Maxima und die Erzeugung volumetrischer Repräsentationen aus diskreten 3D Punktwolken beschränkt sind, überwunden werden können. / The scientific investigation of terrestrial and aquatic ecosystems requires precise information on the three-dimensional structure of the ecologic system. Full-waveform airborne laser scanner data are an ideal basis for the complete volumetric representation of vegetation and water structure in a voxel space. Due to attenuation effects, caused by partial reflections during the laser pulse propagation through the vegetation or water column, each individual laser pulse echo is significantly modified. As a result, the structure in the lower parts of the vegetation or water column is underrepresented in the digitized waveform.
Within this research, novel and innovative methods were developed, which enable the generation of a radiometrically correct voxel space representation. Therefore, a numerically stable reconstruction of the effective differential backscattering cross section utilizing appropriate deconvolution and regularization techniques is required. The essential element of the analysis is the description of the signal attenuation using applicable mathematical models. For this purpose, novel correction methods compensating the signal attenuation based on these models were developed. The correction term is directly derived from the differential backscatter cross section. The basic idea is a gradually increase of the signal amplitudes depending on the individual history of each laser pulse.
The results gained in this work contribute to an improved access to the information on vegetation and water structure, contained in full-waveform laser scanner data. Furthermore, it is possible to overcome limitations of existing approaches, which are mainly based on the extraction of discrete maxima.
|
3 |
Automatische Extraktion von 3D-Baumparametern aus terrestrischen LaserscannerdatenBienert, Anne 11 January 2013 (has links)
Ein großes Anwendungsgebiet des Flugzeuglaserscannings ist in Bereichen der Forstwirtschaft und der Forstwissenschaft zu finden. Die Daten dienen flächendeckend zur Ableitung von digitalen Gelände- und Kronenmodellen, aus denen sich die Baumhöhe ableiten lässt. Aufgrund der Aufnahmerichtung aus der Luft lassen sich spezielle bodennahe Baumparameter wie Stammdurchmesser und Kronenansatzhöhe nur durch Modelle schätzen. Der Einsatz terrestrischer Laserscanner bietet auf Grund der hochauflösenden Datenakquisition eine gute Ergänzung zu den Flugzeuglaserscannerdaten. Inventurrelevante Baumparameter wie Brusthöhendurchmesser und Baumhöhe lassen sich ableiten und eine Verdichtung von digitalen Geländemodellen durch die terrestrisch erfassten Daten vornehmen. Aufgrund der dichten, dreidimensionalen Punktwolken ist ein hoher Dokumentationswert gegeben und eine Automatisierung der Ableitung der Geometrieparameter realisierbar.
Um den vorhandenen Holzvorrat zu kontrollieren und zu bewirtschaften, werden in periodischen Zeitabständen Forstinventuren auf Stichprobenbasis durchgeführt. Geometrische Baumparameter, wie Baumhöhe, Baumposition und Brusthöhendurchmesser, werden gemessen und dokumentiert. Diese herkömmliche Erfassung ist durch einen hohen Arbeits- und Zeitaufwand gekennzeichnet. Aus diesem Grund wurden im Rahmen dieser Arbeit Algorithmen entwickelt, die eine automatische Ableitung der geometrischen Baumparameter aus terrestrischen Laserscannerpunktwolken ermöglichen. Die Daten haben neben der berührungslosen und lichtunabhängigen Datenaufnahme den Vorteil einer objektiven und schnellen Parameterbestimmung. Letztendlich wurden die Algorithmen in einem Programm zusammengefasst, das neben der Baumdetektion eine Bestimmung der wichtigsten Parameter in einem Schritt realisiert. An Datensätzen von drei verschiedenen Studiengebieten werden die Algorithmen getestet und anhand manuell gewonnener Baumparameter validiert.
Aufgrund der natürlich gewachsenen Vegetationsstruktur sind bei Aufnahmen von einem Standpunkt gerade im Kronenraum Abschattungen vorhanden. Durch geeignete Scankonfigurationen können diese Abschattungen minimiert, allerdings nicht vollständig umgangen werden. Zusätzlich ist der Prozess der Registrierung gerade im Wald mit einem zeitlichen Aufwand verbunden. Die größte Schwierigkeit besteht in der effizienten Verteilung der Verknüpfungspunkte bei dichter Bodenvegetation. Deshalb wird ein Ansatz vorgestellt, der eine Registrierung über die berechneten Mittelpunkte der Brusthöhendurchmesser durchführt. Diese Methode verzichtet auf künstliche Verknüpfungspunkte und setzt Mittelpunkte von identischen Stammabschnitten in beiden Datensätzen voraus. Dennoch ist die größte Unsicherheit in der Z-Komponente der Translation zu finden. Eine Methode unter Verwendung der Lage der Baumachsen sowie mit einem identischen Verknüpfungspunkt führt zu besseren Ergebnissen, da die Datensätze an dem homologen Punkt fixiert werden. Anhand eines Studiengebietes werden die Methoden mit den herkömmlichen Registrierungsverfahren über homologe Punkte verglichen und analysiert. Eine Georeferenzierung von terrestrischen Laserscannerpunktwolken von Waldbeständen ist aufgrund der Signalabschattung der Satellitenpositionierungssysteme nur bedingt und mit geringer Genauigkeit möglich. Deshalb wurde ein Ansatz entwickelt, um Flugzeuglaserscannerdaten mit terrestrischen Punktwolken allein über die Kenntnis der Baumposition und des vorliegenden digitalen Geländemodells zu verknüpfen und zusätzlich das Problem der Georeferenzierung zu lösen.
Dass ein terrestrischer Laserscanner nicht nur für Forstinventuren gewinnbringend eingesetzt werden kann, wird anhand von drei verschiedenen Beispielen beleuchtet. Neben der Ableitung von statischen Verformungsstrukturen an Einzelbäumen werden beispielsweise auch die Daten zur Bestimmung von Vegetationsmodellen auf Basis von Gitterstrukturen (Voxel) zur Simulation von turbulenten Strömungen in und über Waldbeständen eingesetzt. Das aus Laserscannerdaten abgeleitete Höhenbild einer Rinde führt unter Verwendung von Bildverarbeitungsmethoden (Texturanalyse) zur Klassifizierung der Baumart.
Mit dem terrestrischen Laserscanning ist ein interessantes Werkzeug für den Einsatz im Forst gegeben. Bestehende Konzepte der Forstinventur können erweiterte werden und es eröffnen sich neue Felder in forstwirtschaftlichen und forstwissenschaftlichen Anwendungen, wie beispielsweise die Nutzung eines Scanners auf einem Harvester während des Erntevorganges. Mit der stetigen Weiterentwicklung der Laserscannertechnik hinsichtlich Gewicht, Reichweite und Geschwindigkeit wird der Einsatz im Forst immer attraktiver. / An important application field of airborne laser scanning is forestry and the science of forestry. The captured data serve as an area-wide determination of digital terrain and canopy models, with a derived tree height. Due to the nadir recording direction, near-ground tree parameters, such as diameter at breast height (dbh) and crown base height, are predicted using forest models. High resolution terrestrial laser scanner data complements the airborne laser scanner data. Forest inventory parameters, such as dbh and tree height can be derived directly and digital terrain models are created. As a result of the dense three dimensional point clouds captured, a high level of detail exists, and a high degree of automation of the determination of the parameters is possible.
To control and manage the existing stock of wood, forest inventories are carried out at periodic time intervals, on the base of sample plots. Geometric tree parameters, such as tree height, tree position and dbh are measured and documented. This conventional data acquisition is characterised by a large amount of work and time. Because of this, algorithms are developed to automatically determine geometric tree parameters from terrestrial laser scanner point clouds. The data acquisition enables an objective and fast determination of parameters, remotely, and independent of light conditions. Finally the majority of the algorithms are combined into a single program, allowing tree detection and the determination of relevant parameters in one step. Three different sample plots are used to test the algorithms. Manually measured tree parameters are also used to validate the algorithms.
The natural vegetation structure causes occlusions inside the crown when scanning from one position. These scan shadows can be minimized, though not completely avoided, via an appropriate scan configuration. Additional the registration process in forest scenes is time-consuming. The largest problem is to find a suitable distribution of tie points when dense ground vegetation exists. Therefore an approach is introduced that allows data registration with the determined centre points of the dbh. The method removes the need for artificial tie points. However, the centre points of identical stem sections in both datasets are assumed. Nevertheless the biggest uncertainness is found in the Z co-ordinate of the translation. A method using the tree axes and one homologous tie point, which fixes the datasets, shows better results. The methods are compared and analysed with the traditional registration process with tie points, using a single study area. Georeferencing of terrestrial laser scanner data in forest stands is problematic, due to signal shadowing of global navigation satellite systems. Thus an approach was developed to register airborne and terrestrial laser scanner data, taking the tree positions and the available digital terrain model.
With the help of three examples the benefits of applying laser scanning to forest applications is shown. Besides the derivation of static deformation structures of single trees, the data is used to determine vegetation models on the basis of a grid structure (voxel space) for simulation of turbulent flows in and over forest stands. In addition, the derived height image of tree bark using image processing methods (texture analysis) can be used to classify the tree species.
Terrestrial laser scanning is a valuable tool for forest applications. Existing inventory concepts can be enlarged, and new fields in forestry and the science of forestry are established, e. g. the application of scanners on a harvester. Terrestrial laser scanners are becoming increasingly important for forestry applications, caused by continuous technological enhancements that reduce the weight, whilst increasing the range and the data rate.
|
Page generated in 0.0637 seconds