• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Robust microfluidic integration for shallow channel aperture optical tweezer

Rajashekara, Yashaswini 09 September 2016 (has links)
The main objective of this thesis is to present a simple and robust hands-on technology for the fabrication of a microfluidic chip in a laboratory. The purpose of this new technology is to replace the existing PDMS based microfluidic chip used for optical trapping of diverse single nano particles. It also lists the different fabrication methods attempted and the successful integration of this chip to the optical trap system which is used to study binding at the single molecular level. Microfluidics is a quickly growing field which deals with manipulating the fluids in channels whose dimensions are few tens of micrometers. Its potential has a major impact on fields like chemical analysis and synthesis techniques, biological analysis and separation techniques, and optics and information technology. One of the main application of these microfluidic chips is in optofluidics, which is the emerging field of integrated photonics with fluidics. This provides freedom to both fields and permits the realization of optical and fluidic property. It requires small volumes of fluids and connections and eventually performs better than conventional methods of robotic fluid handling. Here, the microfluidic chip is targeted for optical trapping with double nano-hole aperture to trap a single protein. The double nanoholes integrated with this microfluidic chip show that stable trapping can be achieved below flow rates of few μL/min. This has provided many possibilities of co-trapping of proteins and study their interactions. / Graduate
2

An Investigation of Poly(N-Isopropylacrylamide) for Applications with Microfluidic Paper-Based Analytical Devices

Mitchell, Haydn Thomas 01 June 2014 (has links) (PDF)
N,N′-methylenebisacrylamide-crosslinked poly(N-isopropylacrylamide), also known as P(NIPAM), was developed as a fluid delivery system for use with microfluidic paper-based analytical devices (microPADs). MicroPADs are postage-stamp-sized devices made out of paper that can be used as platforms for low-cost, simple-to-use point-of-care diagnostic assays. P(NIPAM) is a thermally responsive polymer that absorbs aqueous solutions at room temperature and will expel the solutions to microPADs when heated. The fluid delivery characteristics of P(NIPAM) were assessed, and P(NIPAM) was able to deliver multiple solutions to microPADs in specific sequences or simultaneously in a laminar-flow configuration. P(NIPAM) was then shown to be suitable for delivering four classes of reagents to microPADs: small molecules, enzymes, antibodies and DNA. P(NIPAM) successfully delivered a series of standard concentrations of glucose (0 – 5 mM) to microPADs equipped to perform a colorimetric glucose assay. The results of these tests were used to produce an external calibration curve, which in turn was used to determine accurately the concentrations of glucose in sample solutions. P(NIPAM) successfully delivered fluorescein-labeled IgG and fluorescein-labeled oligonucleotides (20 base pairs) to microPADs in a variety of concentrations. P(NIPAM) also successfully delivered horseradish peroxidase (HRP) to microPADs, and it was determined that HRP could be stored in P(NIPAM) for 35 days with minimal loss in activity. The combination of P(NIPAM) with microPADs will allow for more complex assays to be performed with minimal user input, will facilitate the preparation of external calibration curves in the field, and may be useful in extending the shelf life of microPADs by stabilizing reagents.

Page generated in 0.064 seconds