1 |
Fault Seal Analysis for CO2 Storage: Fault Zone Architecture, Fault Permeability, and Fluid Migration Pathways in Exposed Analogs in Southeastern UtahRichey, David J. 01 May 2013 (has links)
Geologic storage of anthropogenic carbon dioxide (CO2) by injection into underground porous sandstone reservoirs has been proposed as a method for the reduction of anthropogenic greenhouse gas emissions. Upwards migration and leakage of injected fluids along natural fault and fracture networks is a key risk factor for potential injection locations. We examine exposed natural analogs to evaluate the impacts of faulting and fracturing on reservoir and top-seal pairs and to evaluate evidence for paleomigration of fluids along the fault zone.
We examine the Iron Wash fault, a 25-km long normal fault which cuts Jurassic sedimentary rocks and has throws that range from 20-120 m, to examine how a fault may affect seal integrity. Field mapping, kinematic analysis, petrographic analysis, characterization of the fault zone facies and fault architecture, analysis of altered and mineralized rocks in and around the fault zone, and modeling of fault seal capacity was conducted to provide an understanding of the Iron Wash fault zone. Field data and observations were combined with well log and borehole data to produce three types of models for the Iron Wash fault: 1) geometric model of the fault in the subsurface, 2) predictive models of fault zone behavior and fault seal analysis, and 3) predictive geomechanical models of the response of the fault zone to an imposed stress field and increasing the effective stress on the fault.
We conclude that the Iron Wash fault zone has low sealing capacity and will likely not behave as a seal for fluids against the fault zone due primarily to modest throw on the fault and high frequency of fractures associated with the fault zone. Analysis of fluid alteration and mineralization around the fault zone indicates that the fault zone was conduit for paleo-fluids. We conclude that the fault is not likely to develop a sealing membrane and therefore will most likely fail as a seal to fluids moving through the reservoirs modeled here. Modeling results indicate that a reduction in the effective normal stress on fault surfaces may induce failure of faults resulting in earthquakes or increased hydraulic conductivity of fractures.
|
2 |
La Faille Nord Anatolienne dans sa portion immergée en mer de Marmara : évolution du réseau de failles et migration de fluides / The submerged section of the North Anatolian Fault within the Sea of Marmara : evolution of the fault network and fluid migrationGrall, Céline 28 March 2013 (has links)
Cette thèse porte sur la déformation et les migrations de fluides associées à la Faille Nord Anatolienne en Mer de Marmara (Turquie).Nous étudions tout d'abord l'évolution de la géométrie et du taux de glissement du système de faille, par deux approches indépendantes: - modélisation thermique de l'histoire d'un bassin, - définition d'un marqueur temporel de type Dépôt de Transport en Masse, daté par interprétation stratigraphique. Nous montrons que: -(1) le système de failles actuel, défini comme une faille principale accommodant la majorité de la déformation inter-plaque, n'a pas significativement évolué depuis 330.000 ± 100.000 ans dans la partie Ouest de la mer; -(2) le système de faille s'est progressivement réorganisé depuis 2.5-1.5 Ma.Dans un deuxième temps, nous étudions les processus d'initiation des Transports en Masse. Nous montrons que: -(1) même si les Transports en Masse sont contrôlés par des processus tectoniques (principalement les séismes et l'extension crustale), leur fréquence et leur taille sont conditionnées par les oscillations glacio-eustatiques; -(2) des Dépôts en Masse ont une périodicité corrélée aux transitions marins/lacustres. Cette cyclicité peut être expliquée par la diffusion d'eau saumâtre, dans les argiles marines entraînant leur gonflement et déstabilisant les sédiments. Dans une troisième partie, nous étudions la diversité des contextes des sites d'émissions de fluides en fonds de mer. Nous montrons que l'occurrence des sites d'émission de fluides est en partie liée au flux ascendant de gaz le long de couches perméables des bassins vers leurs bords, et le long des fractures du socle vers les bords des bassins et les anticlinaux. / This study addresses the issue on the deformation and the fluid migration, associated to the North Anatolian Fault within the Sea of Marmara (Turkey).First, we aim to constrain the evolution of the fault network and the slip rate through time, by two independent approaches: - historical thermal modeling of a basin of the Sea of Marmara; - definition of a Mass Transport Deposit as a fault lateral slip marker, and dated by stratigraphic interpretation. We show that: - (1) the present day fault system, formed by a main fault which accommodated the main part of the inter-plate deformation does not significantly evolved since 330.000 ± 100.000 years - (2) a progressive reorganization of the fault network occurred since the last 2.5-1.5 Ma.Secondly, we discuss the triggers of Mass Transport Processes. We show that: - (1) despite submarine mass movements are related to tectonic activity (mainly earthquakes and crustal stretching), their frequency and their size are also modulated by glacio-eustatic changes; -(2) remarkable Mass Transport Deposits display some cyclicity in stratigraphic sequences which are apparently correlated to transitions between salty marine and lacustrine environments. This cyclicity is perhaps explained by marine clay activity (swelling) under low brackish-fresh water conditions, which can trigger sediment destabilization.Third, we investigate the diversity of active fluid seepages contexts. We propose that the widespread occurrence of fluid expulsion sites can be explained by up-dip gas migration by buoyancy along permeable strata toward their edges, and along fractures within the basement toward both the edges of the basins and topographic highs.
|
Page generated in 0.1114 seconds