• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design And Synthesis Of Near-ir Emitting Fluorescent Chemosensors For Transition Metal Ions

Kutuk, Ilker 01 June 2008 (has links) (PDF)
Supramolecular chemistry is an emerging field of chemistry which has attracted much attention in recent years as a result of its broad applicability in many areas. Thus, the design of functional supramolecular systems is strongly in demand in this field. For this purpose, we have developed near-IR emitting ratiometric fluorescent chemosensors for transition metal ions. Judicious placement of dithiodioxaazamacrocycles on the BODIPY chromophore generates this chemosensor which is selective for Hg(II) ions and both absorption and emission spectra display large changes that would allow ratiometric sensing.
2

Rational Design Of Ratiometric Chemosensor Via Modulation Of Energy Donor Efficiency

Guliyev, Ruslan 01 September 2008 (has links) (PDF)
Rational design of fluorescent chemosensors is an active area of supramolecular chemistry, photochemistry and photophysics. Ratiometric chemosensors are even more important, as they have an internal system for selfcalibration. In order to develop a new methodology for a ratiometric chemosensor design, we proposed coupling of energy transfer phenomenon to ion sensing. In this study, we targeted energy transfer cassette type chemosensors, where the efficiency of transfer is modulated on the donor side, by metal ion binding which changes the spectral overlap. This work involves the synthesis of a number of EET systems with varying degrees of EET efficiency. The results suggest that this strategy for ratiometric ion sensing is a promising one, enabling a modular approach in chemosensor design.
3

Development of Molecular Tools for Analysis and Imaging of ATP and Other Biomolecules Based on Coordination Chemistry / ATP等の生体分子の解析・イメージングのための配位化学に基づいた分子ツールの開発

Kurishita, Yasutaka 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第18299号 / 工博第3891号 / 新制||工||1597(附属図書館) / 31157 / 京都大学大学院工学研究科合成・生物化学専攻 / (主査)教授 濵地 格, 教授 梅田 眞郷, 教授 森 泰生 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
4

Development of carbon nanotube-based gas and vapour sensors and supramolecular chemistry of carbon nano-materials

Hubble, Lee John January 2009 (has links)
[Truncated abstract] The scientific endeavours described within this thesis attempt to create novel solutions to current scientific, commercial and industrial downfalls, and contribute to the advancement of technologies in these areas. This has been achieved through the application of theoretical and experimental principles, entrenched in the domains of chemistry and physics, which have been harnessed to assist in the transformation from nanoscience to nanotechnology. These solutions range from unique supramolecular systems capable of selective-diameter enrichment of single-walled carbon nanotubes (SWCNTs), to the fabrication of low-cost, potentially remote deployable carbon nanotube-based gas and vapour sensors, and expand right through to the development of water-soluble fluoroionophoric sensors and manipulations of a molecular form of carbon in constructing all-carbon nano-architectures. For the advancement and successful integration of carbon nanotubes (CNTs) into commercial processes, the advent of scalable separation protocols based on their electronic properties is required. SWCNTs have been successfully solubilised using water-soluble p-phosphonated calix[n]arenes (n = 4, 6, 8) and 'extended arm' upper rim functionalised (benzyl, phenyl) p-sulfonated calix[8]arenes. Selective SWCNT diameter solubilisation has been demonstrated and subsequent preferential enrichment of SWCNTs with semiconducting or metallic electronic properties has been achieved. In addition, semiconducting nanotube-enriched supernatants (liquid) have been utilised to fabricate on/off field effect transistors (FET). These water-soluble supramolecular systems can be incorporated into post-growth purification protocols, with direct implications in areas such as carbon nano-electronics and device fabrication. In the current global environment there is a heightened level of public and governmental disquiet due to the reality of impending terrorist attacks. This is compounded by the inherent ease of manufacture and effectiveness of specific chemical warfare agents (CWAs) used in small-scale terrorist operations. ... Additional all-carbon structures are described with the formation of rings of helical SWCNT bundles through post-growth SWCNT modifications, and a variety of fibrous all-carbon structures, most notably novel square-geometry carbon nano-fibres (CNFs), through catalytic-chemical vapour deposition (C-CVD) synthesis strategies. The current requirement for entirely water-soluble fluorescent sensors is routinely documented in the literature. The autofluorescence properties of p-phenyl-sulfonated calix[8]arene are characterised and this water-soluble cavitand is surveyed as a metal cation sensor candidate. This particular system was found to exhibit a change in fluorescence response when exposed to divalent metal cations, and interactions with [UO2]2+, Pb2+, Co2+, and Cu2+ ions are discussed in detail. The system is characterised through a variety of analytical techniques to yield sensor calibration data, degradation characteristics, pH sensitivity and suitability as a 'small molecule' drug-carrier.

Page generated in 0.2736 seconds