• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 4
  • 2
  • 1
  • Tagged with
  • 32
  • 9
  • 7
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Chemistry of diruthenium #mu#-alkenyl complexes

Rodenhurst, Paul Raymond January 1993 (has links)
No description available.
2

Cleavage reactions of pentafluorophenyl-metal compounds

Cunningham, John Anderson January 1966 (has links)
No description available.
3

Synthesis and characterization of molecules to study the conformational barriers of fluorocarbon chains

Niyogi, Sandip 05 1900 (has links)
Fluorocarbons are known to be stiffer than their hydrocarbon analogues, a property that underlines the extensive industrial application of fluorocarbon materials. Although there has been previous studies on the rotational barrier of molecules having fluorocarbon centers, a detailed systematic study is necessary to quantify flurocarbon stiffness. The molecules, Pyrene-(CF2)n-Pyrene, Pyrene-(CF2)n-F, Pyrene-(CH2)n-Pyrene and Pyrene-(CH2)n-H were therefore synthesized to enable the determination of the barrier to rotation of the carbon backbone in fluorocarbons. Conformational studies will be completed with steady-state and time-dependent emission spectroscopy.
4

New routes to fluorocarbon-containing phosphines

Herbert, Christopher James January 2010 (has links)
Routes to sterically demanding organofluorine-containing phosphines are described, and the stereoelectronic properties and chemistry of the resulting new ligands investigated. The synthesis of Cy2P(CF=CF2), 3, has been accomplished. The nucleophilic substitution of Ph2P(CF=CF2) with tBuLi produces the (Z)-isomer, Ph2P(Z-CF=CF(tBu)), 5-(Z), predominantly, which has been shown to be less electron-withdrawing than Ph2P(CF=CF2), and similar in size to 3. The bis-trifluoropropynyl substituted phosphine PhP(tfp)2, 7, has been prepared, and its reaction with tBuLi investigated. This results in the formation of three previously unknown species, the gem¬-difluorocyclopropenyl-containing compound, PhtBuP(dfcp), 8, (Z)-Ph2P(CH=C(t¬Bu)CF3), 9, and PhtBuP(tfp), 10. The nucleophilic substitution occurs preferentially at the phosphorus centre, as shown by the reaction with one equivalent of tBuLi at -60°C, where compounds 9 and 10 are formed. A new route to perfluoroalkyl-containing phosphines has been discovered. The addition of a perfluoroalkyl iodide to Ph2PSiMe3 results in the formation of six new phosphines, and has been shown to be extendable to partially fluorinated systems. The route can also be applied to iPr2PSiMe3, and to the chiral phosphine PhMePSiMe3. Three examples, Ph2PRf (Rf = CF(CF3)2, 15, (sC4F¬9), 18, (cyc-C6F11), 19), have been produced on a preparative scale. The reaction of the bis-trimethylsilyl phenyl phosphine with (CF3)2CFI has been investigated, though it does not result in the production of the bis-perfluoroalkyl-substituted phosphine, instead the previously unknown P-chiral compound, PhP(H)CF(CF3)2, 27 is formed. Mechanistic studies have indicated that Ph2P-PPh2 is the intermediate, and that there is no evidence of a radical mechanism. There is no reaction between Me2(S)P-P(S)Me2 and (CF3)2CFI, though there is when Me2P-P(S)Me2 is used, suggesting that the lone pair of the intermediate diphosphine is necessary for the reaction to proceed. This has resulted in the formation of the new compound, Me2PCF(CF3)2, 28. The chemistry of the perfluoroalkyl-containing phosphines has been investigated; they do not quaternise, but are oxidatively sensitive. The phosphorus(V) selenides of 15, 18, and 19 have been prepared, and based on their 1JPSe coupling constants, the perfluoroalkyl-groups impart a greater electron-withdrawing effect than perfluorovinyl, trifluoropropynyl, or alkoxy fragments. The oxidation of 15 and 18 with XeF2 has also been accomplished, and shown to yield the corresponding F2PPh2Rf compounds. The molybdenum(0) pentacarbonyl complexes of 3, 7, and 15 have been synthesised and perfluoroalkyl-groups have again been shown to be more electron-withdrawing than perfluorovinyl and trifluoropropynyl groups by comparison of v(CO) values. The gold(I) chloride complexes of Ph2PCF3, 15, and 18 and the platinum(II) dichloride complexes of 3 and 15 have been prepared, and the size of these ligands has been estimated from the crystal structures. Compound 18 has been shown to be the largest of these compounds, with a cone angle of 187°.
5

Polysoaps with fluorocarbon hydrophobic chains

Cochin, D., Hendlinger, P., Laschewsky, André January 1995 (has links)
A series of amphiphilic copolymers is prepared by copolymerization of choline methacrylate with 1,1,2,2-tetrahydroperfluorooctyl methacrylate in varying amounts. The copolymers bearing fluorocarbon chains are studied concerning their effects on viscosity, solubilization and surface activity in aqueous solution, exhibiting a general behavior characteristic for polysoaps. The results are compared with the ones obtained for an analogous series of amphiphilic copolymers bearing hydrocarbon chains.
6

The development of an engineering model for the separation of CxFy gasses fluorocarbon / Marco Le Roux

Le Roux, Marco January 2011 (has links)
South Africa is a land blessed with an abundance of mineral deposits. Yet, despite this, very little value adding of minerals exists. Most of the mined minerals are exported, where it is reworked into valued items. The country subsequently imports the valuable items at a much higher cost. In the 2006/7 financial year, the government made the decision to support several projects aimed at adding value to the mined minerals and by so doing, creating job opportunities. One such project was identified for the mineral Fluorite (CaF2). Fluorite is exposed to a controlled burn in a plasma reactor, producing an array of different fluorocarbon gases used in the electronics industry and for commercial polymers like Teflon®. Currently, fluorocarbon gases are separated using a series of cryogenic distillation columns. Although this technique has proven to be successful, it has several negative aspects such as the high cost involved when operating at cryogenic conditions as well as difficulty handling the gases at these sub–zero temperatures. It was proposed to study the possibility of using membranes to separate fluorocarbon gases at ambient conditions. Several membranes were screened to determine which one is best suited for this application. Two Teflon® based membranes were selected from this data. One of the membranes had a PAN support, while the other had a PEI support. Pure gas data for both membranes showed promising results. It yielded the highest flux for C3F6, followed by N2 and CF4. c–C4F8 was not used because it was demonstrated that the gas tends to condensate at low pressures. It is recommended to rather use pressure swing condensation to remove this gas from the mixture before the remainder is purified using membranes. Both membranes behaved similarly, with selectivity between C3F6 and CF4, and N2 and CF4; all above 10. By including the permeate pressure in the Solution–diffusion model, it was possible to model the pure gas data Binary feed gas mixture experiments showed a large amount of coupling existing between the feed gas mixtures. The result is a decrease in the selectivity as well as the total flux of the gas mixture. Partial fluxes were modelled by introducing a thermodynamic factor that was shown to follow a power law equation. The PAN–supported membrane outperformed the PEI–supported one; it was decided to use this membrane from this point onwards. Analysis of the ternary feed mixtures showed a strong selectivity towards the gas abundant in the feed blend. The existence of convective diffusion was proven, and included in the modelling, as well as a breakthrough pressure constant. This is indicative of strong interaction between the different gases and the membrane. Throughout the study it became clear that the difference in surface charge between the gases and the membrane were decisive. Opposite charges between a gas (C3F6) and the membrane aided in gas permeation. Membrane separation of fluorocarbon gases at ambient conditions is possible. Teflon® based membranes are recommended. It will be advantageous to study the effect of elevated temperatures on the separation efficiency of such a system. / Thesis (M.Ing. (Chemical Engineering))--North-West University, Potchefstroom Campus, 2012.
7

The development of an engineering model for the separation of CxFy gasses fluorocarbon / Marco Le Roux

Le Roux, Marco January 2011 (has links)
South Africa is a land blessed with an abundance of mineral deposits. Yet, despite this, very little value adding of minerals exists. Most of the mined minerals are exported, where it is reworked into valued items. The country subsequently imports the valuable items at a much higher cost. In the 2006/7 financial year, the government made the decision to support several projects aimed at adding value to the mined minerals and by so doing, creating job opportunities. One such project was identified for the mineral Fluorite (CaF2). Fluorite is exposed to a controlled burn in a plasma reactor, producing an array of different fluorocarbon gases used in the electronics industry and for commercial polymers like Teflon®. Currently, fluorocarbon gases are separated using a series of cryogenic distillation columns. Although this technique has proven to be successful, it has several negative aspects such as the high cost involved when operating at cryogenic conditions as well as difficulty handling the gases at these sub–zero temperatures. It was proposed to study the possibility of using membranes to separate fluorocarbon gases at ambient conditions. Several membranes were screened to determine which one is best suited for this application. Two Teflon® based membranes were selected from this data. One of the membranes had a PAN support, while the other had a PEI support. Pure gas data for both membranes showed promising results. It yielded the highest flux for C3F6, followed by N2 and CF4. c–C4F8 was not used because it was demonstrated that the gas tends to condensate at low pressures. It is recommended to rather use pressure swing condensation to remove this gas from the mixture before the remainder is purified using membranes. Both membranes behaved similarly, with selectivity between C3F6 and CF4, and N2 and CF4; all above 10. By including the permeate pressure in the Solution–diffusion model, it was possible to model the pure gas data Binary feed gas mixture experiments showed a large amount of coupling existing between the feed gas mixtures. The result is a decrease in the selectivity as well as the total flux of the gas mixture. Partial fluxes were modelled by introducing a thermodynamic factor that was shown to follow a power law equation. The PAN–supported membrane outperformed the PEI–supported one; it was decided to use this membrane from this point onwards. Analysis of the ternary feed mixtures showed a strong selectivity towards the gas abundant in the feed blend. The existence of convective diffusion was proven, and included in the modelling, as well as a breakthrough pressure constant. This is indicative of strong interaction between the different gases and the membrane. Throughout the study it became clear that the difference in surface charge between the gases and the membrane were decisive. Opposite charges between a gas (C3F6) and the membrane aided in gas permeation. Membrane separation of fluorocarbon gases at ambient conditions is possible. Teflon® based membranes are recommended. It will be advantageous to study the effect of elevated temperatures on the separation efficiency of such a system. / Thesis (M.Ing. (Chemical Engineering))--North-West University, Potchefstroom Campus, 2012.
8

Model Analysis of Plasma-Surface Interactions during Silicon Oxide Etching in Fluorocarbon Plasmas / フルオロカーボンプラズマによる酸化シリコンエッチングにおけるプラズマ-表面相互作用の数値解析

Fukumoto, Hiroshi 23 May 2012 (has links)
Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第17064号 / 工博第3613号 / 新制||工||1548(附属図書館) / 29784 / 京都大学大学院工学研究科航空宇宙工学専攻 / (主査)教授 斧 髙一, 教授 稲室 隆二, 教授 青木 一生 / 学位規則第4条第1項該当
9

Water-in-Oil Microemulsions: Counterion Effects in AOT Systems and New Fluorocarbon-based Microemulsion Gels

Pan, Xiaoming 01 February 2010 (has links)
Microemulsions have important applications in various industries, including enhanced oil recovery, reactions, separations, drug delivery, cosmetics and foods. We investigated two different kinds of water-in-oil microemulsion systems, AOT (bis(2-ethylhexyl) sulfosuccinate) microemulsions with various counterions and perfluorocarbon-based microemulsion gels with triblock copolymers. In the AOT systems, we investigated the viscosity and interdroplet interactions in Ca(AOT)2, Mg(AOT)2 and KAOT microemulsions, and compared our results with the commonly-studied NaAOT/water/decane system. We attribute the differences in behavior to different hydration characteristics of the counterions, and we believe that the results are consistent with a previously proposed charge fluctuation model. Perfluorocarbons (PFCs) are of interest in a variety of biomedical applications as oxygen carriers. We have used triblock copolymer Pluronic® F127 to modify the rheology of PFC-based microemulsions, we have been able to form thermoreversible PFOB (perfluorooctyl bromide)-based gels, and have investigated the phase stability, rheology, microstructure, interactions, and gelation mechanism using scattering, rheometry, and microscopy. Finally, we attempted to use these data to understand the relationship between rheology and structure in soft attractive colloids.
10

FUNCTIONALIZATION OF FLUORINATED SURFACTANT TEMPLATED SILICA

Osei-Prempeh, Gifty 01 January 2007 (has links)
Surfactant templating provides for the synthesis of ordered mesoporous silica and the opportunity to tailor the pore size, pore structure, particle morphology and surface functionality of the silica through the selection of synthesis conditions and surfactant template. This work extends the synthesis of nanostructured silica using fluorinated surfactant templates to the synthesis of organic/inorganic composites. The effect of fluorinated surfactant templates (C6F13C2H4NC5H5Cl, C8F17C2H4NC5H5Cl and C10F21C2H4NC5H5Cl), which have highly hydrophobic fluorocarbon tails, on functional group incorporation, accessibility, and silica textural properties is examined and compared to properties of hydrocarbon surfactant (C16H33N(CH3)3Br, CTAB) templated silica. Hydrocarbon (vinyl, n-decyl and 3-aminopropyl) and fluorocarbon (perfluoro-octyl, perfluorodecyl) functional group incorporation by direct synthesis is demonstrated, and its effects on silica properties are interpreted based on the aggregation behavior with the surfactant templates. Silica materials synthesized with CTAB possess greater pore order than materials synthesized with the fluorocarbon surfactants. The incorporation of the short vinyl chain substantially reduces silica pore size and pore order. However, pore order increases with functionalization for materials synthesized with the fluorinated surfactant having the longest hydrophobic chain. The incorporation of longer chain functional groups (n-decyl, perfluorodecyl, perfluoro-octyl) by direct synthesis results in hexagonal pore structured silica for combinations of hydrocarbon/fluorocarbon surfactant and functional groups. The long chain of these silica precursors, which can be incorporated in the surfactant micelle core, affect the pore size less than vinyl incorporation. Synthesis using the longer chain fluoro-surfactant (C8F17C2H4NC5H5Cl) template in ethanol/water solution results in highest incorporation of both n-decyl and the fluorocarbon functional groups, with a corresponding loss of material order in the fluorinated material. Matching the fluorocarbon surfactant (C6F13C2H4NC5H5Cl) to the perfluoro-octyl precursor did not show improved functional group incorporation. Higher incorporation of the perfluoro-octyl functional group was observed for all surfactant templates, but the perfluoro-decyl silica is a better adsorbent for the separation of hydrocarbon and fluorocarbon tagged anthraquinones. Incorporating a reactive hydrophilic functional group (3-aminopropyl) suggests further applications of the resulting nanoporous silica. Greater amine incorporation is achieved in the CTAB templated silica, which has hexagonal pore structure; the order and surface area decreases for the fluorinated surfactant templated material.

Page generated in 0.0599 seconds