• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 108
  • 43
  • 27
  • 10
  • 10
  • 9
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 254
  • 75
  • 65
  • 64
  • 29
  • 27
  • 26
  • 24
  • 23
  • 22
  • 21
  • 21
  • 21
  • 20
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Design for Coupled-Mode Flutter and Non-Synchronous Vibration in Turbomachinery

Clark, Stephen Thomas January 2013 (has links)
<p>This research presents the detailed investigation of coupled-mode flutter and non-synchronous vibration in turbomachinery. Coupled-mode flutter and non-synchronous vibration are two aeromechanical challenges in designing turbomachinery that, when present, can cause engine blade failure. Regarding flutter, current industry design practices calculate the aerodynamic loads on a blade due to a single mode. In response to these design standards, a quasi three-dimensional, reduced-order modeling tool was developed for identifying the aeroelastic conditions that cause multi-mode flutter. This tool predicts the onset of coupled-mode flutter reasonable well for four different configurations, though certain parameters were tuned to agree with experimentation. Additionally, the results of this research indicate that mass ratio, frequency separation, and solidity have an effect on critical rotor speed for flutter. Higher mass-ratio blades require larger rotational velocities before they experience coupled-mode flutter. Similarly, increasing the frequency separation between modes and raising the solidity increases the critical rotor speed. Finally, and most importantly, design guidelines were generated for defining when a multi-mode flutter analysis is required in practical turbomachinery design. </p><p>Previous work has shown that industry computational fluid dynamics can approximately predict non-synchronous vibration (NSV), but no real understanding of frequency lock-in and blade limit-cycle amplitude exists. Therefore, to understand the causes of NSV, two different reduced-order modeling approaches were used. The first approach uses a van der Pol oscillator to model a non-linear fluid instability. The van der Pol model is then coupled to a structural degree of freedom. This coupled system exhibits the two chief properties seen in experimental and computational non-synchronous vibration. Under various conditions, the fluid instability and the natural structural frequency will lock-in, causing structural limit-cycle oscillations. This research shows that with proper model-coefficient choices, the frequency range of lock-in can be predicted and the conditions for the worst-case, limit-cycle-oscillation amplitude can be determined. This high-amplitude limit-cycle oscillation is found at an off-resonant condition, i.e., the ratio of the fluid-shedding frequency and the natural-structural frequency is not unity. In practice, low amplitude limit-cycle oscillations are acceptable; this research gives insight into when high-amplitude oscillations may occur and suggests that altering a blade's natural frequency to avoid this resonance can potentially make the response worse.</p><p>The second reduced-order model uses proper orthogonal decomposition (POD) methods to first reconstruct, and ultimately predict, computational fluid dynamics (CFD) simulations of non-synchronous vibration. Overall, this method was successfully developed and implemented, requiring between two and six POD modes to accurately predict CFD solutions that are experiencing non-synchronous vibration. This POD method was first developed and demonstrated for a transversely-moving, two-dimensional cylinder in cross-flow. Later, the method was used for the prediction of CFD solutions for a two-dimensional compressor blade, and the reconstruction of solutions for a three-dimensional first-stage compressor blade. </p><p>This research is the first to offer a van der Pol or proper orthogonal decomposition approach to the reduced-order modeling of non-synchronous vibration in turbomachinery. Modeling non-synchronous vibration is especially challenging because NSV is caused by complicated, unsteady flow dynamics; this initial study helps researchers understand the causes of NSV, and aids in the future development of predictive tools for aeromechanical design engineers.</p> / Dissertation
72

Modelo experimental para ensaios de Flutter de uma seção típica aeroelástica / Experimental model for Flutter tests of a typical aeroelastic section

Eduardo Jesus Tavares 02 October 2009 (has links)
A aeroelasticidade é a ciência que estuda os fenômenos provenientes das interações entre forças aerodinâmicas, elásticas e inerciais. Estes fenômenos podem ser classificados como estáticos ou dinâmicos e estes divididos em problemas de estabilidade ou de resposta. Destaca-se aqui o flutter, um fenômeno aeroelástico dinâmico de estabilidade. A velocidade crítica de flutter é a fronteira entre a estabilidade e instabilidade de um sistema aeroelástico. Em velocidades menores que a crítica qualquer oscilação é amortecida ao longo do tempo. Na velocidade crítica o sistema aeroelástico apresenta oscilações auto excitadas com amplitude e frequência constantes. Acima da velocidade crítica verificam-se oscilações instáveis que resultam na falha de uma estrutura. Este trabalho apresenta o projeto, fabricação e testes de um modelo experimental para testes de flutter em túnel de vento. O modelo experimental é composto por uma asa rígida conectada a uma suspensão elástica que atribui dois graus de liberdade ao experimento. As características inerciais e elásticas do modelo experimental são determinadas e utilizadas em um modelo aeroelástico computacional. Este modelo utiliza as equações de movimento para uma seção típica combinadas com o modelo aerodinâmico não estacionário de Theodorsen. O método V-g é utilizado para a solução do problema de flutter, ou seja, determinação da velocidade crítica de flutter. Esta solução é confrontada com a velocidade crítica medida em ensaios em túnel de vento. A evolução aeroelástica do modelo experimental é medida e apresentada como respostas no domínio do tempo e da frequência. / Aeroelasticity is the science which studies the interaction among inertial, elastic, and aerodynamic forces. Aeroelastic phenomena can be divided in static and dynamic problems and these studied as problems of stability or response. Flutter is a dynamic aeroelastic problem of stability and one of the most representative topics of aeroelasticity. The critical flutter speed can be defined as the frontier between stability and instability. Below the critical speed vibrations are damped out as time proceeds. At the critical flutter speed the system presents a self-sustained oscillatory behavior with constant frequency and amplitude. Unstable oscillations are observed for speeds above the critical one leading to structural failure. The design, fabrication and tests of an experimental model for flutter tests in wind tunnels are presented in this work. The experimental model has a rigid wing connected to a flexible suspension that allows vibrations in two degrees of freedom. The elastic and inertial parameters of the experimental system are used in a computational aeroelastic model. The equations of motion for a typical aeroelastic section and an unsteady aerodynamic model given by Theodorsen are combined and the resulting aeroelastic equations are solved using the V-g method. The computational results are compared with the experimental critical flutter speed measured in wind tunnel tests. The experimental aeroelastic behavior with increasing airflow speed is given in time and frequency domain.
73

Metodologia de análise modal de flutter com sensores piezelétricos em estruturas aeronáuticas / Modal flutter analysis methodology using piezoelectric sensor in aeronautical structures

Alexandre Simões de Almeida 29 November 2013 (has links)
A identificação de mecanismos modais é uma tarefa que requer um grande esforço ao se considerar geometrias complexas. O uso de materiais inteligentes como tecnologia nesse tipo de identificação vem sendo bastante difundido, principalmente o uso de sensores piezelétricos, como o piezo-fiber composite (PFC). Esse tipo de aplicação pode se tornar uma ferramenta bastante prática no estudo de instabilidades aeroelásticas, em especial o mecanismo modal de flutter. A proposta desse trabalho é criar uma metodologia de análise de flutter simulando o desempenho de materiais piezelétricos, aderidos em laminados compósitos, como sensores modais. Inicialmente, é realizada uma análise aeroelástica da estrutura para se identificar o mecanismo e os modos dominantes para o surgimento do flutter. Em seguida, os modos identificados são detectados pelos sensores com uma determinada potência de sinal. A sensibilidade desse sinal é avaliada de acordo com a posição e configuração do laminado embebido no sensor. Para realizar essa simulação, um modelo de asa é gerado e suas frequências naturais e modos são determinados pelo método dos elementos finitos (MEF). Com esses dados, é possível caracterizar o modelo nas equações de movimento aeroelásticas. O carregamento aerodinâmico dessas equações é obtido utilizando o método dos anéis de vórtice, do inglês: vortex lattice method (VLM). A simulação é realizada em cada velocidade de fluxo e a resposta dos sensores piezelétricos é obtida no domínio do tempo e domínio da freqüência para se analisar a potência do sinal. Foi realizada uma prévia análise de um modelo de asa representado por uma placa e as configurações de maior potência de sinal são identificadas. A posição dos sensores se demonstrou mais sensível do que a configuração do laminado e a utilização de apenas um sensor foi suficiente para identificação do mecanismo modal, o que pode tornar essa tecnologia viável em ensaios de flutter em estruturas de material compósito. / For complex aeronautical structures, modal mechanism identification requires a great deal of effort. The use of smart materials has been developed in this application, mainly the sensor application with piezo-fiber composites (PFC). It can become a useful tool in aeroelastic instabilities studies, especially on flutter modal mechanism. This work intends to develop a methodology of flutter analysis evaluating the piezoelectric materials performance, using composites impregnation effects, and working as a modal sensor. First, one aeroelastic analysis is done to identify the flutter mechanism and its dominant modes. Then, it modes is detected by sensors with some specific power of electric signal, whose sensitivity is evaluated according with position and embeeded laminate configuration. This simulation uses a plate model representing a wing, whose natural frequencies and modes are determined by finite element method (FEM). So, given this data, is possible to define the wing model using an equation of motion, whose aerodynamic load is obtained by vortex lattice method (VLM). That equation is solved step by step, for each airspeed considered, then, the PFC response is obtained both in the frequency and time domain. The analysis was done using a metric that qualifies the best configuration according with the power of signal. The sensor position was more significant than the laminate configuration; however, the use of only one sensor is sufficient to identify the modal mechanism, which becomes this technology feasible in flutter test of composite structures.
74

Proposta conceitual de excitador de \"flutter\" alternativo para ensaios em vôo / Conceptual purpose of an alternative flutter exciter for flight testing

Jorge Henrique Bidinotto 19 October 2007 (has links)
Os novos materiais utilizados nas estruturas de aeronaves, mais leves e flexíveis, tornam estas estruturas mais sujeitas a fenômenos aeroelásticos, sendo que o mais sério deles é o flutter, que deve ser cuidadosamente investigado com uma boa campanha de ensaios em vôo durante o desenvolvimento e certificação da aeronave. Este trabalho propõe um projeto conceitual de um excitador de flutter que atenda às necessidades dos ensaios, tentando resolver problemas encontrados nos modelos utilizados comumente. Para isso, é feita uma revisão da literatura pertinente, apresentando conceitos de ensaios em vôo e do fenômeno em questão, além de apresentar um histórico dos ensaios e modelos de excitadores utilizados ao longo da história. Em seguida, são apresentados alguns conceitos de excitadores, que são dimensionados e analisados segundo suas vantagens e desvantagens para finalmente escolher o modelo mais pertinente visando no futuro um projeto detalhado, construção e testes em túnel de vento. / The ultimate materials used in aircraft structures, lighter and more flexibles, make these structures more susceptible to aeroelastic phenomena including flutter, the most dangerous of all. This kind of phenomena must be carefully investigated with satisfactory flight test campaigns during the aircraft development and certification. This work proposes a flutter exciter conceptual design that attends the test necessities, trying to solve problems found in the models used actually. So, a bibliographic revision is done, presenting flight test concepts and the studied phenomena, regarding a flight test history and the exciter models used through the years. Finally, some exciter concepts are presented, dimensioned and analyzed considering their advantages and disadvantages in order to choose the most pertinent model, considering, in a near future, the detailed design, manufacturing and wind tunnel tests.
75

Um método para identificação de parâmetros modais em tempo real / A method for modal parameters identification in real time

Daniela Cristina Rebolho 19 April 2006 (has links)
Na Indústria Aeronáutica, é de extrema importância a qualidade e o desempenho de seus produtos, que estão diretamente relacionados ao projeto e ao desenvolvimento de estruturas adequadas, pois além de seu caráter funcional deve-se também garantir a sua integridade nas mais diversas condições de operação. O comportamento dinâmico destas estruturas é um dos seus principais aspectos, principalmente devido à demanda contínua para estruturas mais leves e consequentemente mais flexíveis. Tradicionalmente, as estruturas aeroespaciais devem ser submetidas a alguma forma de verificação antes do voo, de forma a assegurar que a aeronave esteja livre de qualquer fenômeno de instabilidade aeroelástica, que pode ocorrer provocando problemas de fadiga ou falhas estruturais. Um dos fenômenos de instabilidade mais importantes é denominado flutter. As técnicas de ensaio em voo para identificação de flutter são de extrema importância para o conhecimento dos limites de voo seguro. Um dos elementos essenciais para a realização de ensaios de flutter em voo é o processo de identificação dos parâmetros modais estruturais da aeronave sob teste. A identificação precisa e rápida dos parâmetros modais permite determinar com antecedência e segurança as condições de voo em que o fenômeno de flutter irá ocorrer. Atualmente as pesquisas nesta área apontam na direção do desenvolvimento de tecnologia que permita a identificação em tempo real dos parâmetros modais associados ao flutter. Neste trabalho foi realizado o estudo de um método de identificação de parâmetros modais para ser aplicado em tempo real. O método de identificação utilizado para este estudo é o EERA - Extended Eigensystem Realization Algorithm, um método de identificação no domínio do tempo considerado eficiente e poderoso, pois é capaz de identificar o comportamento dinâmico complexo em estruturas. O algoritmo foi validado através de um ensaio experimental num modelo de asa no túnel de vento, onde foram determinados os parâmetros modais envolvidos no flutter. Também foi realizado um ensaio experimental numa placa de alumínio, onde foram identificados os seus parâmetros modais, frequências naturais e fatores de amortecimento. Após sua validação, o método EERA foi adaptado e programado no equipamento de aquisição e processamento de sinais dSPACE®, que é destinado a realizar identificação em tempo real. Por último foi realizado um ensaio experimental em tempo real na placa de alumínio utilizada anteriormente, onde os parâmetros modais identificados on-line foram comparados com os identificados off-line, comprovando assim a eficiência do método na identificação em tempo real. / In the Aeronautical Industry, the quality and the performance of its products, that are directly related to the project and the development of adequate structures, are of extreme importance, since, beyond their functional characteristics, their integrity, in the most diverse operation conditions, must also be guaranteed. The dynamic behavior of these structures is one of its main aspects, mainly due to continuous demand for lighter and consequently more flexible structures. Traditionally, the aerospace structures must be submitted to some form of verification before the flight, to assure that the aircraft is free of any aeroelastic instability phenomenon, which when occurring will provoke structural fatigue problems or failure. One of the more important instability phenomena is called flutter. The techniques of flight test for identification of flutter are of extreme importance for the knowledge of the limits of safe flight. One of the essential elements for the accomplishment of flutter tests in flight is the process of identification of the structural modal parameters of the aircraft under test. The accurate and fast identification of the modal parameters allows determining, with antecedence and security, the flight conditions where the phenomenon of flutter will occur. Currently the research in this area points in the direction of developing the technology that allows the identification in real time of the modal parameters associated to flutter. In this work the study of a method of identification of modal parameters was carried through to be applied in real time. The method of identification used for this study is the EERA - Extended Eigensystem Realization Algorithm, a method of identification in the time domain considered efficient and powerful, since it is capable to identifying complex dynamic behavior in structures. The algorithm was validated with an experimental test in a model of wing in the wind tunnel, where the involved modal parameters in flutter had been determined. Also an experimental test was carried out with an aluminum plate, where its modal parameters, natural frequencies and damping factors, had been identified. After its validation, the method EERA was adapted and programmed in the dSPACE® signals acquisition and processing equipment, which is used for carrying out identification in real time. Finally an experimental test, in real time, with the previously used aluminum plate was carried out, when the modal parameters identified on-line were compared with those identified off-line, thus proving the efficiency of the method for identification in real time.
76

Utvecklingen av ett AR tillägg inom inredning : ”Från Null till något”

Santhakumar, Anojan January 2022 (has links)
The purpose of this project has been to create a prototype that uses AR functions. The goal with this has been to use it to enable users to place furniture that is seen in pictures, in a real environment such as their home or an office. For this to happen, a design process has been used where information and the collection of data has happened. This data has since formed the basis for being able to create a number of different prototypes with two different approaches. These were Figma and Unity. The results from this project are two different prototypes that show users how AR can be used in the interior design industry or similar domains. This result has received positive feedback and has shown that there is a future potential, but that more work is required, for example, the addition of several distinct functions. / Syftet med detta projekt har varit att skapa en prototyp som använder sig av AR funktioner. Målsättningen med detta är att använda den för att kunna placera möbler som ses på bilder, i en verklig miljö exempelvis sitt hem eller en kontorsmiljö. För att detta ska ske har en designprocess använts där information och data har samlats in. Denna data har sedan legat som grund för att kunna skapa ett flertal olika prototyper med två olika tillvägagångssätt. Dessa var Figma och Unity. Resultatet från detta projekt är två olika prototyper som visar för användare hur AR kan användas inom inredningsbranschen eller liknande domäner. Detta resultat har fått en positiv återkoppling och har visat på en framtida potential finns, men att mera arbete krävs exempelvis tillägget av flera olika funktioner.
77

Study Of Stall Flutter Of An Isolated Blade In A Low Reynolds Number Incompressible Flow

Bhat, Shantanu 01 1900 (has links) (PDF)
Highly-loaded turbomachine blades can stall under off-design conditions. In this regime, the flow can separate close to the leading edge of the blade in a periodic manner that can lead to blade vibrations, commonly referred to as stall flutter. Prior experimental studies on stall flutter have been at large Re (Re ~ 106). In the present work, motivated by applications in Unmanned Air Vehicles (UAV) and Micro Air Vehicles (MAV), we study experimentally the forces and flow fields around an oscillating blade at low Re (Re ~ 3 x 104). At these low Re, the flow even over the stationary blade can be quite different. We experimentally study the propensity of an isolated symmetric and cambered blade (with chord c) to undergo self-excited oscillations at high angles of attack and at low Reynolds numbers (Re ~ 30, 000). We force the blade, placed at large mean angle of attack, to undergo small amplitude pitch oscillations and measure the unsteady loads on the blade. From the measured loads, the direction and magnitude of energy transfer to/from the blade is calculated. Systematic measurements have been made for varying mean blade incidence angles and for different excitation amplitudes and frequencies (f). These measurements indicate that post stall there is a possibility of excitation of the blade over a range of Strouhal Numbers (St = fc/U) with the magnitude of the exciting energy varying with amplitude, frequency and mean incidence angles. In particular, the curves for the magnitude of the exciting energy against Strouhal number (St) are found to shift to higher St values as the mean angle of attack is increased. We perform the same set of experiments on two different blade shapes, namely NACA 0012 and a compressor blade profile, SC10. Both blade profiles show qualitatively similar phenomena. The flow around both the stationary and oscillating blades is studied through Particle Image Velocimetry (PIV). PIV measurements on the stationary blade show the gradual shift of the flow separation point towards the leading edge with increasing angle of attack, which occurs at these low Re. From PIV measurements on an oscillating blade near stall, we present the flow field around the blade at different phases of the blade oscillation. These show that the boundary layer separates from the leading edge forming a shear layer, which flaps with respect to the blade. As the Strouhal number is varied, the phase between the flapping shear layer and the blade appears to change. This is likely to be the reason for the observed change in the sign of the energy transfer between the flow and the blade that is responsible for stall flutter.
78

Prediction and analysis of wing flutter at transonic speeds.

Shieh, Teng-Hua. January 1991 (has links)
This dissertation deals with the instability, known as flutter, of the lifting and control surfaces of aircraft of advanced design at high altitudes and speeds. A simple model is used to represent the aerodynamics for flutter analysis of a two-degree-of-freedom airfoil system. Flutter solutions of this airfoil system are shown to be algebraically homomorphic in that solutions about different elastic axes can be found by mapping them to those about the mid-chord. Algebraic expressions for the flutter speed and frequency are thus obtained. For the prediction of flutter of a wing at transonic speeds, an accurate and efficient computer code is developed. The unique features of this code are the capability of accepting a steady mean flow regardless of its origin, a time dependent perturbation boundary condition for describing wing deformations on the mean surface, and a locally applied three-dimensional far-field boundary condition for minimizing wave reflections from numerical boundaries. Results for various test cases obtained using this code show good agreement with the experiments and other theories.
79

Physical Insights, Steady Aerodynamic Effects, and a Design Tool for Low-Pressure Turbine Flutter

Waite, Joshua Joseph January 2016 (has links)
<p>The successful, efficient, and safe turbine design requires a thorough understanding of the underlying physical phenomena. This research investigates the physical understanding and parameters highly correlated to flutter, an aeroelastic instability prevalent among low pressure turbine (LPT) blades in both aircraft engines and power turbines. The modern way of determining whether a certain cascade of LPT blades is susceptible to flutter is through time-expensive computational fluid dynamics (CFD) codes. These codes converge to solution satisfying the Eulerian conservation equations subject to the boundary conditions of a nodal domain consisting fluid and solid wall particles. Most detailed CFD codes are accompanied by cryptic turbulence models, meticulous grid constructions, and elegant boundary condition enforcements all with one goal in mind: determine the sign (and therefore stability) of the aerodynamic damping. The main question being asked by the aeroelastician, ``is it positive or negative?'' This type of thought-process eventually gives rise to a black-box effect, leaving physical understanding behind. Therefore, the first part of this research aims to understand and reveal the physics behind LPT flutter in addition to several related topics including acoustic resonance effects. A percentage of this initial numerical investigation is completed using an influence coefficient approach to study the variation the work-per-cycle contributions of neighboring cascade blades to a reference airfoil. The second part of this research introduces new discoveries regarding the relationship between steady aerodynamic loading and negative aerodynamic damping. Using validated CFD codes as computational wind tunnels, a multitude of low-pressure turbine flutter parameters, such as reduced frequency, mode shape, and interblade phase angle, will be scrutinized across various airfoil geometries and steady operating conditions to reach new design guidelines regarding the influence of steady aerodynamic loading and LPT flutter. Many pressing topics influencing LPT flutter including shocks, their nonlinearity, and three-dimensionality are also addressed along the way. The work is concluded by introducing a useful preliminary design tool that can estimate within seconds the entire aerodynamic damping versus nodal diameter curve for a given three-dimensional cascade.</p> / Dissertation
80

Association between obesity and postoperative atrial fibrillation in patients undergoing cardiac operations: a systematic review and meta-analysis

Hernández, Adrian V., Kaw, Roop, Pasupuleti, Vinay, Bina, Pouya, P. A. Ioannidis, John, Bueno, Hector, Boersma, Eric, Gillinov, Marc 03 July 2014 (has links)
In a systematic review and random effects meta-analysis, we evaluated whether obesity is associated with postoperative atrial fibrillation (POAF) in patients undergoing cardiac surgery. Eighteen observational studies that excluded patients with preoperative AF were selected until December 2011 (n=36,147). Obese patients had a modest higher risk of POAF in comparison to non-obese (OR 1.12, 95%CI 1.04-1.21, p=0.002). The association between obesity and POAF did not vary substantially by type of cardiac surgery, study design or year of publication. POAF was significantly associated with higher risk of stroke, respiratory failure, and operative mortality. / Revisión por pares

Page generated in 0.0416 seconds