• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1035
  • 807
  • 259
  • 107
  • 81
  • 68
  • 25
  • 24
  • 17
  • 13
  • 12
  • 9
  • 9
  • 9
  • 9
  • Tagged with
  • 2852
  • 458
  • 358
  • 328
  • 319
  • 233
  • 166
  • 162
  • 153
  • 145
  • 134
  • 126
  • 125
  • 124
  • 120
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

Nouvelles structures de machines électriques pour la génération embarquée avionique / New electric machine structures for embedded avionic generation

Nasr, Andre 08 December 2017 (has links)
Les travaux présentés dans cette thèse abordent le sujet de la génération électrique embarquée dans les avions de futur. L'objectif principal étant de trouver de nouvelles structures de machines électriques qui peuvent répondre aux nouvelles exigences avioniques. Nous nous sommes particulièrement intéressés à une Machine à Commutation de Flux à Double Excitation avec Pont Magnétique (MCFDEPM). La structure de cette machine présente plusieurs avantages comme des sources d'excitation statiques, un rotor passif et une structure particulière du stator qui permet d'avoir une faible tension rémanente respectant ainsi les contraintes de sécurité du cahier des charges. Dans le premier chapitre, nous avons présenté un état de l'art sur les machines à commutation de flux à simple et à double excitation. Nous avons donné aussi les règles qui définissent le choix du nombre de pôles statoriques et rotoriques. Le chapitre 2 a été consacré pour étudier les performances électromagnétiques de la MCFDEPM en utilisant un modèle en éléments finis. Ce modèle a été validé par des mesures expérimentales réalisées sur un prototype 3 kW. Dans un dernier chapitre, nous avons mis en place une méthodologie d'optimisation en éléments finis pour améliorer les performances en charge de la MCFDEPM et limiter sa tension rémanente. Les résultats de l'optimisation ont montré des performances bien améliorées. La MCFDEPM se présente comme une bonne candidate pour remplacer la machine à 3 étages dans l'avion du futur. / This work addresses the subject of the embedded electric generation in future aircraft. The main objective is to find a new electrical machine structures that can meet the new avionic requirements. We have been particularly interested in a Hybrid Excited Flux Switching machine with a Magnetic Bridge (HEFSMMB). The structure of this machine has several advantages such as static excitation sources, a passive rotor and a unique stator structure which makes it possible to have a low residual voltage, thus respecting the safety constraints. We have presented in the first chapter a state of the art on singly and doubly excited flux switching machines. We have also given the rules which define the choice of the number of stator and rotor poles. Chapter 2 was devoted to study the electromagnetic performances of the HEFSMMB using a finite element model. This model has been validated by experimental measurements carried out on a 3 kW prototype. In the final chapter, we have put in place an optimization methodology in order to improve the overall performances of the HEFSMMB and to limit its residual voltage. The optimization results showed much improved performances. It can be concluded that the MCFDEPM is a good candidate to replace the three-stage machine in future aircraft.
282

Use of Halbach Arrays in Axial and Radial Flux Permanent Magnet Machines for Aerospace Applications / Halbach Arrays in Aerospace Axial and Radial Flux Machines

Forsyth, Alexander January 2023 (has links)
In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not endorse any of McMaster University's products or services. Internal or personal use of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for creating new collective works for resale or redistribution, please go to http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License from RightsLink. / The need for reductions in global greenhouse gas emissions, coupled with rising fuel prices, has motivated intense research in the area of hybrid and fully electric crafts for commercial applications in the aviation sector. This thesis explores implementation of Halbach arrays in high-speed radial flux machines (RFMs) and low-speed axial flux machines (AFMs) for aerospace applications. Highly accurate analytical equations are developed for quickly predicting the magnetic field in the latter (both for coreless and steel core stators) due to the complex three dimensional axial flux paths which make traditional finite element analysis time-consuming. Electromagnetic design and optimization of two aerospace machines that use Halbachs are detailed. The first is a ~14 kW AFM intended to replace an existing high lift motor RFM concept in NASA’s Maxwell X57 all-electric plane. Two design variants are selected which achieve a 10 % increase in torque/power and a 10 % decrease in mass/volume, respectively. The second machine is a 20,000 RPM surface permanent magnet RFM capable of 150 kW peak power output that is intended as a proof-of-concept for the later development of a megawatt machine for a hybrid and/or all-electric aircraft. / Thesis / Master of Applied Science (MASc)
283

Uniform Field Distribution Using Distributed Magnetic Structure

Keezhanatham Seshadri, Jayashree 13 January 2014 (has links)
Energy distribution in a conventional magnetic component is generally not at a designer's disposal. In a conventional toroidal inductor, the energy density is inversely proportional to the square of the radius. Thus, a designer would be unable to prescribe uniform field distribution to fully utilize the inductor volume for storing magnetic energy. To address this problem a new inductor design, called a "constant-flux" inductor, is introduced in this thesis. This new inductor has the core and windings configured to distribute the magnetic flux and energy relatively uniformly throughout the core volume to achieve power density higher than that of a conventional toroidal inductor. The core of this new inductor design is made of concentric cells of magnetic material, and the windings are wound in the gaps between the cells. This structure is designed to avoid crowding of the flux, thus ensuring lower core energy losses. In addition, the windings are patterned for shorter length and larger area of cross-section to facilitate lower winding energy losses. Based on this approach, a set of new, constant flux inductor/transformer designs has been developed. This design set is based on specific input parameters are presented in this thesis. These parameters include the required inductance, peak and rms current, frequency of operation, permissible dc resistance, material properties of the core such as relative permeability, maximum permissible magnetic flux density for the allowed core loss, and Steinmetz parameters to compute the core loss. For each constant flux inductor/transformer design, the winding loss and core loss of the magnetic components are computed. In addition, the quality factor is used as the deciding criterion for selection of an optimized inductor/transformer design. The first design presented in this thesis shows that for the same maximum magnetic field intensity, height, total stored energy, and material, the footprint area of the new five-cell constant-flux inductor is 1.65 times less than that of an equivalent conventional toroidal inductor. The winding loss for the new inductor is at least 10% smaller, and core loss is at least 1% smaller than that in conventional inductors. For higher energy densities and taller inductors, an optimal field ratio of the dimensions of each cell (α = Rimin/Rimax) and a larger number of cells is desired. However, there is a practical difficulty in realizing this structure with a larger number of cells and higher field ratio α. To address this problem, an inductor design is presented that has a footprint area of a three-cell constant-flux inductor (α = 0.6) that is 1.48 times smaller in comparison to an equivalent conventional toroidal inductor. For the same maximum magnetic flux density, height, material, and winding loss, the energy stored in this new three-cell constant-flux inductor (α = 0.6) is four times larger than that of an equivalent conventional toroidal inductor. Finally, new designs for application-specific toroidal inductors are presented in this thesis. First, a constant-flux inductor is designed for high-current, high-power applications. An equivalent constant-flux inductor to a commercially available inductor (E70340-010) was designed. The height of this equivalent inductor is 20% less than the commercial product with the same inductance and dc resistance. Second, a constant-flux inductor design of inductance 1.2 µH was fabricated using Micrometal-8 for the core and flat wire of 0.97 mm x 0.25 mm for the conductor. The core material of this inductor has relative permeability < 28 and maximum allowed flux density of 3600 Gauss. The dc resistance of this new, constant flux inductor was measured to be 14.4 mΩ. / Master of Science
284

Neutron Flux Measurements and Calculations in the Gamma Irradiation Facility Using MCNPX

Giuliano, Dominic Richard 05 October 2010 (has links)
No description available.
285

Mechanisms controlling air-sea gas exchange in the Baltic Sea

Gutiérrez-Loza, Lucía January 2020 (has links)
Carbon plays a major role in physical and biogeochemical processes in the atmosphere, the biosphere, and the ocean. CO2 and CH4 are two of the most common carbon-containing compounds in the atmosphere, also recognized as major greenhouse gases. The exchange of CO2 and CH4 between the ocean and the atmosphere is an essential part of the global carbon cycle. The exchange is controlled by the air–sea concentration gradient and by the efficiency of the transfer processes. The lack of knowledge about the forcing mechanisms affecting the exchange of these climate-relevant gases is a major source of uncertainty in the estimation of the global oceanic contributions. Quantifying and understanding the air–sea exchange processes is essential to constrain the estimates and to improve our knowledge about the current and future climate. In this thesis, the mechanisms controlling the air–sea gas exchange in the Baltic Sea are investigated. The viability of micrometeorological techniques for CH4 monitoring in a coastal environment is evaluated. One year of semi-continuous measurements of air–sea CH4 fluxes using eddy covariance measurements suggests that the method is useful for CH4 flux estimations in marine environments. The measurements allow long-term monitoring at high frequency rates, thus, capturing the temporal variability of the flux. The region off Gotland is a net source of CH4, with both the air–sea concentration gradient and the wind as controlling mechanisms. A sensitivity analysis of the gas transfer velocity is performed to evaluate the effect of the forcing mechanisms controlling the air–sea CO2 exchange in the Baltic Sea. This analysis shows that the spatio-temporal variability of CO2 fluxes is strongly modulated by water-side convection, precipitation, and surfactants. The effect of these factors is relevant both at regional and global scales, as they are not included in the current budget estimates.
286

Convective Heat Flux Sensor Validation, Qualification and Integration in Test Articles

Earp, Brian Edward 12 September 2012 (has links)
The purpose of this study is to quantify the effects of heat flux sensor design and interaction with both test article material choice and geometry on heat flux measurements. It is the public domain component of a larger study documenting issues inherent in heat flux measurement. Direct and indirect heat flux measurement techniques were tested in three thermally diverse model materials at the same Mach 6 test condition, with a total pressure of 1200 psi and total temperature of 1188° R, and compared to the steady analytic Fay-Riddell solution for the stagnation heat flux on a hemisphere. A 1/8 in. fast response Schmidt-Boelter gage and a 1/16 in. Coaxial thermocouple mounted in ¾ in. diameter stainless steel, MACOR, and Graphite hemispheres were chosen as the test articles for this study. An inverse heat flux calculation was performed using the coaxial thermocouple temperature data for comparison with the Schmidt-Boelter gage. Before wind tunnel testing, the model/sensor combinations were tested in a radiative heat flux calibration rig at known static and dynamic heat fluxes from 1 to 20 BTU/ft2/s. During wind tunnel testing, the chosen conditions yielded stagnation point convective heat flux of 15-60 BTU/ft2/s, depending on the stagnation point wall temperature of the model. A computational fluid dynamic study with conjugate heat transfer was also undertaken to further study the complex mechanisms at work. The overall study yielded complex results that prove classic methodology for inverse heat flux calculation and direct heat flux measurement require more knowledge of the thermal environment than a simple match of material properties. Internal and external model geometry, spatial and temporal variations of the heat flux, and the level of thermal contact between the sensor and the test article can all result in a calculated or measured heat flux that is not correct even with a thermally matched sensor. The results of this study supported the conclusions of many previous studies but also examined the complex physics involved across heat flux measurement techniques using new tools, and some general guidance for heat flux sensor design and use, and suggestions for further research are provided. / Ph. D.
287

Systems metabolic engineering of Arabidopsis for increased cellulose production

Yen, Jiun Yang 29 January 2014 (has links)
Computational biology enabled us to manage vast amount of experimental data and make inferences on observations that we had not made. Among the many methods, predicting metabolic functions with genome-scale models had shown promising results in the recent years. Using sophisticated algorithms, such as flux balance analysis, OptKnock, and OptForce, we can predict flux distributions and design metabolic engineering strategies at a greater efficiency. The caveat of these current methods is the accuracy of the predictions. We proposed using flux balance analysis with flux ratios as a possible solution to improving the accuracy of the conventional methods. To examine the accuracy of our approach, we implemented flux balance analyses with flux ratios in five publicly available genome-scale models of five different organisms, including Arabidopsis thaliana, yeast, cyanobacteria, Escherichia coli, and Clostridium acetobutylicum, using published metabolic engineering strategies for improving product yields in these organisms. We examined the limitations of the published strategies, searched for possible improvements, and evaluated the impact of these strategies on growth and product yields. The flux balance analysis with flux ratio method requires a prior knowledge on the critical regions of the metabolic network where altering flux ratios can have significant impact on flux redistribution. Thus, we further developed the reverse flux balance analysis with flux ratio algorithm as a possible solution to automatically identify these critical regions and suggest metabolic engineering strategies. We examined the accuracy of this algorithm using an Arabidopsis genome-scale model and found consistency in the prediction with our experimental data. / Master of Science
288

Finite Element Analysis Based Modeling of Magneto Rheological Dampers

El-Aouar, Walid Hassib 25 September 2002 (has links)
A Finite Element model was built to analyze and examine a 2-D axisymmetric MR damper. This model has been validated with the experimental data. The results obtained in this thesis will help designers to create more efficient and reliable MR dampers. We can create some design analysis to change the shape of the piston in the damper or other parameters in the model. The main benefit of this research is to show a 2-D MR damper and generate the magnetic flux density along the MR Fluid gap. We can detect saturation by looking at the nodal solution for the magnetic flux density. Increasing the current in the model, results in an increase in magnetic induction. We studied four different configurations of an MR damper piston in order to determine how changing the shape of the piston affects the maximum force that the damper can provide. In designing MR dampers, the designer always faces the challenge of providing the largest forces in the most compact and efficient envelope. Therefore, it is important to identify the configuration that gives more force in less space. In chapter 4, shows the magnetic flux density contour before and after reaching the rheological saturation. By increasing the current, the color spectrum of the magnetic flux density will shift from the MR fluid gap to the piston centerline. In chapter 5, we provided a reasonably good amount of force in model 4 at 1.4 Amps, but it reaches saturation before the other models. For cases with power constraint or heat build up limitations, this model could work the best among the four designs that we considered. For cases where higher electrical currents can be tolerated, model 3 would be the most advantageous design, since it provides the largest force among the four models. / Master of Science
289

Eddy Covariance in a Tallgrass Prairie: energy balance closure, water and carbon budgets, and shrub expansion

Arnold, Kira Brianne January 1900 (has links)
Master of Science / Department of Agronomy / Jay Ham / The exchange of water, carbon, and energy between grasslands and the atmosphere is an important biogeochemical pathway affecting ecosystem productivity and sustainability. The eddy covariance (EC) technique directly measures this mass and energy exchange. However, questions remain regarding the accuracy of EC-derived H[subscript]2O and CO[subscript]2 fluxes in landscapes with irregular topography and variable vegetation. These concerns stem from the "energy balance (EB) closure problem" (i.e., measured energy in does not equal measured energy out). My main objectives were to examine EB closure at two topographical positions within an annually burned tallgrass prairie watershed and to examine the effect of landscape position and woody encroachment on carbon and water exchanges. In tallgrass prairie, 14 km south of Manhattan, KS, USA, EC towers were deployed at three sites in 2007 and 2008. One upland and lowland tower were within an annually burned watershed dominated by C[subscript]4 grasses. Another lowland tower was deployed in a separate quadrennial-burned watershed where significant woody vegetation occupied the tower's sampling area. All towers measured EB components (net radiation, R[subscript]n; soil heat flux, G; sensible heat flux, H; and latent heat flux, [lambda]E). In the annually burned watershed, landscape position had little effect on G, H, and R[subscript]n with differences [less than] 2% between sites. However lowland [lambda]E was 8% higher, owing to larger plant biomass/leaf area and greater soil moisture. Energy balance closure (i.e., [[lambda]E + H] / [R[subscript]n - G]) was 0.87 and 0.90 at the upland and lowland sites, respectively. A nearby large-aperture scintillometer provided good validation of EC-derived H in 2007. Data suggested that underestimates of [lambda]E may have accounted for the closure problem; sample calculations showed that increasing [lambda]E by 17% would have resulted in near prefect closure. Data from this study suggests that EB closure does not strongly correlate with topographical position; however these data raise questions regarding accuracy of the [lambda]E term. Mass exchange analysis shows that the prairie carbon cycle is highly dependent on burning. The lowland and upland annually burned sites saw carbon gains of 281 to 444 g C m[superscript]-[superscript]2 yr[superscript]-[superscript]1 before burning with the shrub lowland showing the least (e.g. 159 and 172 g C m[superscript]-[superscript]2 yr[superscript]-[superscript]1). After the prescribed burn, the upland and lowland sites remained slight carbon sinks (68 to 191 g C m[superscript]-[superscript]2 yr[superscript]-[superscript]1), whereas the unburned shrub site was a carbon sink in 2007 (159 g C m[superscript]-[superscript]2 yr[superscript]-[superscript]1, because no carbon loss was incurred via burning) and a large carbon source in 2008 when it was burned the following year (336 g C m[superscript]-[superscript]2 yr[superscript]-[superscript]1 loss). Evapotranspiration (ET) was highest at the shrub lowland where greater soil moisture and abundance of deep-rooted C[subscript]3 shrub vegetation allowed greater uptake and loss of water.
290

Effets des conditions environnementales et des pratiques culturales sur les flux de carbone et d'eau dans les agrosystèmes

Beziat, Pierre 18 December 2009 (has links) (PDF)
Les agrosystèmes représentent une importante part des terres émergées (plus d'un tiers de la surface au sol en Europe) et sont au cœur de nombreuses problématiques de développement durable. Ils sont consommateur d'eau et produisent des gaz à effet de serre (GES) qui contribuent aux changements climatiques en cours, ceux-ci ayant en retour des impacts encore difficiles à prévoir sur le fonctionnement et la gestion des agrosystèmes. L'étude des cycles biogéochimiques au sein des agrosystèmes est donc fondamentale. Le principal objectif de ces travaux de thèse a été d'étudier le fonctionnement carboné et hydrique des agrosystèmes à partir du suivi de la végétation (phénologie, biomasse, surface foliaire) et de mesures micro météorologiques d'échanges de matière (CO2, H2O) et d'énergie à l'interface entre le système sol/couvert et l'atmosphère sur deux parcelles agricoles expérimentales situées au Sud Ouest de Toulouse. L'ensemble de ces travaux a permis de montrer que la mesure des flux par la méthode des fluctuations turbulentes (EC) permet de quantifier les bilans de carbone et d'eau des agrosystèmes et d'étudier certains des processus physiques et écophysiologiques à l'origine des différents flux. A partir de ces mesures, une analyse des flux et bilans d'eau et de carbone a été effectuée. Une méthode de calcul des écobilans intégrant les émissions de GES liées aux pratiques culturales a été établie pour nos sites et appliqués aux parcelles expérimentales de cultures du réseau Européen CarboEurope-IP, représentant un panel important de cultures et de pratiques culturales. Les mesures annuelles de flux net de CO2 à l'interface sol/couvert et atmosphère ont montré que les agrosystèmes se comportent le plus souvent comme des puits atmosphériques de carbone. Cependant, la prise en compte des imports de carbone (fertilisation organique et semences) et des exports de carbone au moment de la récolte en plus des mesures de flux net vertical au dessus de la parcelle a permis de montrer que le bilan de carbone des cultures correspond rarement à un puits et que le plus souvent il est une source de carbone pour l'atmosphère (127 ± 243 g C m-2 an-1 pour 41 années-sites du réseau CarboEurope-IP). En moyenne, pour ces 41 années-sites étudiés, le flux net vertical de CO2 représentait 37 % du bilan de carbone (soit 88 % des entrées de carbone dans la parcelle), les apports de carbone sous forme de fertilisation organique et de semences représentaient 5 % du bilan (soit 12 % des entrées de carbone) et les exports de carbone au moment de la récolte représentaient 58 % du bilan. Les émissions de GES liées aux pratiques culturales représentaient en moyenne seulement 7.6 % du bilan de GES. Ces résultats montrent qu'il est donc fondamental de considérer les flux biosphériques de CO2 (qui représentent 88 % des entrées de carbone) dans le bilan annuel de GES de la parcelle sans quoi ce bilan serait très fortement surestimé. L'efficience de l'utilisation de l'eau (WUE) a été abordée à travers des points de vue agronomiques (production de biomasse par quantité d'eau évapotranspirée) et environnementaux (production nette de carbone de l'écosystème par quantité d'eau évapotranspirée). Ces approches pouvaient parfois produire des résultats contradictoires dans le cas de cultures avec de fortes exportations de biomasse (cas du maïs utilisé pour l'ensilage par exemple) et doivent donc être précautionneusement pris en compte dans l'optique d'une gestion durable des agrosystèmes. Finalement les mesures de flux ont permis 1) de tester une première version du modèle ICASTICS qui permettra de mieux comprendre les processus et de simuler les différentes composantes des flux nets d'eau et de carbone des agrosystèmes pour une gamme importante de cultures, de modes de gestions et de conditions climatiques. 2) de faire évoluer le modèle SAFY pour qu'il puisse calculer des flux et bilans d'eau et de carbone à des échelles supérieures a celles de la parcelle, en utilisant des données de télédétection, dans une perspective de gestion des ressources.

Page generated in 0.0523 seconds