1 |
Métricas com Q-curvatura constante via um fluxo não local e um princípio do máximo para o operador de PaneitzSantos, Makson Sales 10 August 2015 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Não consta / O objetivo desta dissertação é expor com detalhes o resultado de Gursky-Malchiodi. Dada uma variedade Riemanniana (M,g) de dimensão n>4 com curvatura escalar não negativa e Q-curvatura semipositiva, existe uma métrica conforme a g com Q-curvatura constante positiva. Com estas hipóteses mostra-se um princípio do máximo forte para o operador de Paneitz, que é um operador diferencial parcial não linear de quarta ordem. A partir daí define-se um fluxo não local e, utilizando funções testes, modificamos conformemente a métrica inicial tal que o fluxo converge sequencialmente para uma métrica conforme de Q-curvatura constante positiva e curvatura escalar positiva.
|
Page generated in 0.0639 seconds