Spelling suggestions: "subject:"asociaciones"" "subject:"ampliaciones""
1 |
Webs planos y foliaciones GaloisBeltrán Cortez, Andrés William 23 October 2014 (has links)
No presenta resumen. / Un k−web W viene dado por una ecuación diferencial ordinaria de primer orden definida de forma implícita por un polinomio de grado k que puede entenderse como una estructura geométrica descrita localmente por k−foliaciones en posición general. La geometría de webs es el estudio de invariantes de familias finitas de foliaciones y fue iniciado por Blaschke y su escuela a inicios de la década de 1920 en Hamburgo. Uno de los resultados emblemáticos obtenido por él junto con Dubordieu, es el que caracteriza la equivalencia local de un germen de un 3−web W en el plano complejo con el 3−web definido por dx · dy · d(x+ y) a través del anulamiento de un covariante diferencial: la curvatura K(W) del web W, que es una 2−forma meromorfa con polos en su discriminante ∆(W), este último conjunto es el lugar donde las tangentes a las hojas de las foliaciones que conforman el web dejan de ser transversales. La estructura local de un k−web no es rígida como sucede en los casos k = 1, 2 sino que admiten invariantes analíticos no triviales: el rango de un web, que no es sino la dimensión de un espacio que relaciona las integrales primeras de las foliaciones que definen a un web, y su curvatura. El estudio de webs desde el punto de vista local ha sido tratado por diferentes autores, ver [2, 11]. Un ejemplo de un k−web proveniente de la geometría algebraica proyectiva es obtenido al considerar una curva algebraica reducida C sobre P 2 C de grado k, la curva dual Cˇ ⊂ Pˇ2 C de C es la curva formada por las tangentes a C. Como Cˇ es de clase k entonces por un punto genérico ℓ ∈ Pˇ2 C pasan exactamente k tangentes a Cˇ. Podemos considerar estas k rectas como hojas de foliaciones sobre un abierto Zariski de Pˇ2 C , de esta manera obtenemos un k−web, llamado web algebraico asociado a la curva C, denotado por WC. Como consecuencia de un teorema clásico de Abel, el rango del k−web WC es maximal, en el sentido que coincide con la cota superior (k − 1)(k − 2)/2. Para un k−web con k > 3 la curvatura es definida como la suma de las curvaturas de todos los 3−subwebs extraídos de un web W. Miháileanu obtiene un resultado donde demuestra que el anulamiento de la curvatura de un k−web es una condición necesaria para la maximalidad del rango de W, ver [32]. Los webs de rango máximo que no son localmente equivalentes a ningún web algebraico WC han sido denominados excepcionales. En [25] los autores demuestran que para cada k > 4 existe una familia infinita de k−webs excepcionales contenidos en el espacio de k−webs de grado 1. / Tesis
|
2 |
Densidad en el espacio de foliacionesSarmiento, Alberto 25 September 2017 (has links)
No description available.
|
3 |
Clasificación analítica de ciertos tipos de foliaciones cuspidales (C3,0)Neciosup Puican, Hernán 24 October 2014 (has links)
Sin duda, uno de los problemas ubicuos de las matemáticas es el de la clasificación
de objetos, una vez definido un criterio de equivalencia. Así pues, se clasifican estructuras algebraicas, objetos geométricos, o ecuaciones, siguiendo criterios de isomorfismo, conservación de ciertas estructuras geométricas, o relación entre los espacios de soluciones. Uno de los objetivos de estudiar estas clasificaciones es hallar un representante “sencillo” a cada una de las clases de equivalencia, cuyas propiedades, fáciles de estudiar, permiten deducir por analogía propiedades de los objetos más generales. Mencionamos algunos ejemplos conocidos.
1. Toda matriz cuadrada es equivalente a una matriz en forma de Jordan. Así deducimos por ejemplo, la descomposición de un endomorfismo en su parte semisimple y nilpotente.
2. Todo grupo abeliano finito es isomorfo a una suma directa de grupos cíclicos. Un problema de equivalencia similar para grupos simples finito ocupó la labor de numerosos matemáticos durante décadas.
3. Toda superficie topológica compacta es homeomorfa a uno de los siguientes modelos: una esfera, una suma conexa de toros, o una suma conexa de un plano proyectivo y una de las anteriores. Problemas análogos en dimensión superior han resultado mucho más difíciles de abordar. Así, la célebre conjetura de Poincaré está relacionada con la clasificación de 3-variedades topológicas compactas. En particular, se puede mostrar que si una tal variedad tiene la homología de una 3-esfera S³, es homeomorfo a ella. La importancia de resolver este tipo de problemas muestra que la resolución de dicha conjetura en cualquier dimensión ha sido merecedora de tres Medallas Fields (Stephen Smale en 1966, Michael Freedman en 1986 y Grigori Perelman en 2006).
La presente memoria se enmarca dentro de los problemas de clasificación. Más específicamente, nos proponemos estudiar la clasificación analítica, mediante la holonomía proyectiva, de ciertos tipos de foliaciones holomorfas singulares de codimension uno en (C³, 0). En concreto, el estudio que presentamos en esta tesis se escoge con la finalidad de establecer, hasta qué punto, una técnica sencilla, nos permite clasificar analíticamente las foliaciones cuspidales en (C³, 0). De este modo, el desarrollo de esta tesis se fundamenta en una interrogante fundamental que da sentido y forma a todos nuestros planteamientos.
Esta interrogante es el siguiente ¿hasta qué punto la técnica de clasificación analítica usada por R. Moussu [Mou2], D. Cerveau y R. Moussu [CMou], R. Meziani [Me], M.Berthier, R. Meziani y P. Sad [BMS], entre otros, nos permite clasificar analíticamente las foliaciones cuspidales en (C³, 0)?. Esta pregunta, se presta a múltiples respuestas y a variados planteamientos, pero en el caso que nos ocupa cabe destacar un planteamiento que posteriormente pasaremos a describir / Tesis
|
4 |
Webs planaresBeltrán Cortez, Andrés 25 September 2017 (has links)
Este artículo se inicia describiendo el problema fundamental de la geometría de webs, dando asimismo algunos resultados clásicos de esta teoría. Finalmente, se describe la estructura del espacio de relaciones abelianas de webs planares que admiten automorfismo infinitesimal. Como resultado de esto se obtienen algunas consecuencias.
|
5 |
Curva polar de una foliación asociada a sus raíces aproximadasSaravia Molina, Nancy Edith 05 October 2018 (has links)
Las foliaciones no dicríticas de segundo tipo fueron caracterizadas por Mattei - Salem
[Ma-Sa] en término de su multiplicidad y de su unión de separatrices. En este trabajo
de tesis, damos otra caracterización a las foliaciones no dicríticas de segundo tipo con el
polígono de Newton de la foliación y el de su unión de separatrices.
De otro lado, Loray [Lo] enuncia una caracterización para un tipo de foliaciones con
singularidades cuspidales que tienen la misma resolución que su unión de separatrices, sin
embargo Fernández, Mozo y Neciosup [F-Mo-N] encuentran una impresición en la caracterización
debido a que la condición es necesaria pero no suficiente. Lo que hacemos en este
trabajo es caracterizar a dicha familia de foliaciones cuando son de segundo tipo y damos
condiciones necesarias y suficientes cuando son de tipo curva generalizada en términos de
su orden pesado.
Finalmente, generalizamos el resultado de García Barroso y Gwozdziewicz [GB-G1]
a foliaciones, esto es, descomponemos la curva polar de una foliación curva generalizada
asociada a sus raíces aproximadas. Dicha descomposición viene expresada en función del
tipo topológico de la separatriz de la foliación. / Tesis
|
6 |
Relaciones abelianas y curvatura de un WebBeltrán Cortez, Andrés 25 September 2017 (has links)
No description available.
|
7 |
El teorema de Merle para foliacionesTorres Estrella, Felipe Antony 29 May 2018 (has links)
En el presente trabajo, estudiamos el teorema de Merle para curvas algebroides planas irreducibles, en este teorema se establece una descomposición de la curva polar de una curva analítica irreducible que determina la topología de esta curva. También estudiamos el teorema de Rouille, que generaliza el teorema de Merle, en donde se establece la descomposición de la curva polar, de una foliación holomorfa de tipo curva generalizada, que nos brinda información topológica de la separatriz de la foliación. / Tesis
|
8 |
Soluciones algebraicas de foliaciones sobre P2cNeciosup Obando, Jorge 25 September 2017 (has links)
En el presente trabajo nos proponemos estudiar las Foliaciones Holomorfas Singulares sobre el espacio proyectivo complejo 2-dimensional P2c. Nuestro interés en estas foliaciones está centrado en sus soluciones algebraicas. Determinaremos una forma normal de encontrar el índice de Camacho & Sad de estas soluciones, el cual es invariante por foliación. Finalmente, mostramos que el conjunto de foliaciones holomorfas singulares sin soluciones algebraicas es genérico.
|
9 |
Singularidades simples no-dicríticasFernández Sánchez, Percy 25 September 2017 (has links)
En este artículo de divulgación clasificamos las singularidades simples no-dicríticas utilizando las técnicas de Martinet {5}. Todo este material es inspirado en los artículos: Cano-Cerveau {3], Cano {2] y Fernández-Mozo [4]
|
10 |
Automorfismo de foliaciones holomorfas sobre superficies racionalesFernández Sánchez, Percy 25 September 2017 (has links)
En este trabajo clasificamos las foliaciones holomorfas con grupo de automorfismo infinito sobre una superficie racional. Como consecuencia de este resultado probamos que el grupo de automorfismo de una foliación de tipo general con singularidades sobre una superficie racional es finito.
|
Page generated in 0.0891 seconds