• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Application de la théorie des jeux à l'optimisation du routage réseau - solutions algorithmiques

Boussaton, Octave 16 February 2010 (has links) (PDF)
Il existe de nombreuses méthodes d'optimisation du routage réseau en général. Dans cette thèse nous nous intéressons au développement d'algorithmes distribués permettant une stabilisation, au sens de Nash, des flux réseaux. Nous rappelons tout d'abord brièvement le contexte général d'Internet aujourd'hui et quelques notions de théorie des jeux. Nous présentons un jeu de tarification simple à deux joueurs, que la méthode des joueurs fictifs permet de faire converger. Puis nous présentons un jeu de routage plus complexe, à n joueurs, basé sur le modèle de Wardrop, ainsi qu'un algorithme de comportement distribué qui permet au système de converger vers un équilibre de Wardrop (équilibre social). Ces équilibres sont confondus avec les équilibres de Nash dans le cas limite où un joueur représente une partie infinitésimale du trafic. Nous présentons ensuite un raffinement de notre représentation initiale du problème, qui permet une diminution de sa complexité, en terme de dimension des espaces de stratégies et de temps de calcul. Nous montrons qu'il s'agit d'une bonne heuristique d'approximation de la première méthode trop coûteuse, sa qualité dépend d'un unique paramètre. Enfin, nous concluons par la présentation de résultats de simulation qui montrent que notre méthode distribuée est effectivement capable d'apprendre les meilleurs équilibres du système.
2

Application de la théorie des jeux à l'optimisation du routage réseau : solutions algorithmiques / Game theory applied to routing in networks : algorithmic solutions

Boussaton, Octave 16 February 2010 (has links)
Il existe de nombreuses méthodes d'optimisation du routage réseau en général. Dans cette thèse nous nous intéressons au développement d'algorithmes distribués permettant une stabilisation, au sens de Nash, des flux réseaux. Nous rappelons tout d'abord brièvement le contexte général d'Internet aujourd'hui et quelques notions de théorie des jeux. Nous présentons un jeu de tarification simple à deux joueurs, que la méthode des joueurs fictifs permet de faire converger. Puis nous présentons un jeu de routage plus complexe, à n joueurs, basé sur le modèle de Wardrop, ainsi qu'un algorithme de comportement distribué qui permet au système de converger vers un équilibre de Wardrop (équilibre social). Ces équilibres sont confondus avec les équilibres de Nash dans le cas limite où un joueur représente une partie infinitésimale du trafic. Nous présentons ensuite un raffinement de notre représentation initiale du problème, qui permet une diminution de sa complexité, en terme de dimension des espaces de stratégies et de temps de calcul. Nous montrons qu'il s'agit d'une bonne heuristique d'approximation de la première méthode trop coûteuse, sa qualité dépend d'un unique paramètre. Enfin, nous concluons par la présentation de résultats de simulation qui montrent que notre méthode distribuée est effectivement capable d'apprendre les meilleurs équilibres du système. / There are several approaches for optimizing network routing in general. In this document, we are interested in developping distributed algorithms able to stabilize the network flows in the sense of Nash. We introduce the general context of the Internet today along with a few key-notions in game theory. We show a simple two-player tarification game that the fictitious player dynamics is able to solve. Then, we introduce a more complex routing game with n players based on the Wardrop model and a distributed learning algorithm that allows the system to converge towards Wardop equilibria (social equilibrium). These equilibria also are Nash equilibria in the limit case where a player is an infinitesimal part of the network flow. We present a refinement of our initial representation of the problem that narrows down its complexity, in terms of the size of the strategy space and computation time. We show that it is a good heuristic for approximating the previous method, its quality relies upon only one parameter. Finally, we conclude with simulations results, showing that our distributed method is able to learn the best equilibriua of the system.
3

Reconstruction statistique 3D à partir d’un faible nombre de projections : application : coronarographie RX rotationnelle / 3D statistical reconstruction from a small number of projections. application : XR rotational coronarography

Oukili, Ahmed 16 December 2015 (has links)
La problématique de cette thèse concerne la reconstruction statistique itérative 3D de l'arbre coronaire, à partir d'un nombre très réduit d'angiogrammes coronariens (5 images). Pendant un examen rotationnel d'angiographie RX, seules les projections correspondant à la même phase cardiaque sont sélectionnées afin de vérifier la condition de non variabilité spatio-temporelle de l'objet à reconstruire (reconstruction statique). Le nombre restreint de projections complique cette reconstruction, considérée alors comme un problème inverse mal posé. La résolution d'un tel problème nécessite une procédure de régularisation. Pour ce faire, nous avons opté pour le formalisme bayésien en considérant la reconstruction comme le champ aléatoire maximisant la probabilité a posteriori (MAP), composée d'un terme quadratique de vraisemblance (attache aux données) et un a priori de Gibbs (à priori markovien basé sur une interprétation partielle de l'objet à reconstruire). La maximisation MAP adoptant un algorithme d'optimisation numérique nous a permis d'introduire une contrainte de lissage avec préservation de contours des reconstructions en choisissant adéquatement les fonctions de potentiel associées à l'énergie à priori. Dans ce manuscrit, nous avons discuté en détail des trois principales composantes d'une reconstruction statistique MAP performante, à savoir (1) l'élaboration d'un modèle physique précis du processus d'acquisition, (2) l'adoption d'un modèle à priori approprié et (3) la définition d'un algorithme d'optimisation itératif efficace. Cette discussion nous a conduit à proposer deux algorithmes itératifs MAP, MAP-MNR et MAP-ARTUR-GC, que nous avons testés et évalués sur des données simulées réalistes (données patient issues d'une acquisition CT- 64 multi-barrettes). / The problematic of this thesis concerns the statistical iterative 3D reconstruction of coronary tree from a very few number of coronary angiograms (5 images). During RX rotational angiographic exam, only projections corresponding to the same cardiac phase are selected in order to check the condition of space and time non-variability of the object to reconstruct (static reconstruction). The limited number of projections complicates the reconstruction, considered then as an illness inverse problem. The answer to a similar problem needs a regularization process. To do so, we choose baysian formalism considering the reconstruction as a random field maximizing the posterior probability (MAP), composed by quadratic likelihood terms (attached to data) and Gibbs prior (prior markovian based on a partial interpretation of the object to reconstruct). The MAP maximizing allowed us using a numerical optimization algorithm, to introduce a smoothing constraint and preserve the edges on the reconstruction while choosing wisely the potential functions associated to prior energy. In this paper, we have discussed in details the three components of efficient statistical reconstruction MAP, which are : 1- the construction of precise physical model of acquisition process; 2- the selection of an appropriate prior model; and 3- the definition of an efficient iterative optimization algorithm. This discussion lead us to propose two iterative algorithms MAP, MAP-MNR and MAP-ARTUR-GC, which we have tested and evaluated on realistic simulated data (Patient data from 64-slice CT).

Page generated in 0.1367 seconds