Spelling suggestions: "subject:"forces hydrodynamique""
1 |
Penalty methods for the simulation of fluid-solid interactions with various assemblies of resolved scale particles / Méthodes de pénalisation pour la simulation des interactions fluide-solide avec des réseaux variés de particules résoluesChadil, Mohamed-Amine 30 October 2018 (has links)
Les simulations des écoulements diphasiques à l’échelle réelle de l’application nécessitent des modèles pour les termes non fermés des équations macroscopiques. Des simulations numériques directes à particule résolue utilisant la méthode de pénalisation visqueuse ont été réalisées afin de mesurer les interactions entre des particules de différentes formes (sphérique et ellipsoïdale) et le fluide porteur à différents régimes d'écoulement (de stokes à l'inertiel). Deux méthodes ont été développées durant cette thèse afin d'extraire les forces hydrodynamiques ainsi que le transfert de chaleur sur les frontières immergées représentant les particules. Plusieurs validations ont été conduites pour différentes configurations de particules : de la simulation d’une particule isolée à un réseau aléatoire de sphères en passant par réseau cubique face centrée de sphères. Une corrélation du nombre de Nusselt est proposée pour un sphéroïde allongé plongé dans un écoulement uniforme. / The simulations of multiphase flows at real application scale need models for unclosed terms in macroscopic equations. Particle-Resolved Direct Numerical Simulations using Viscous Penalty Method have been carried out to quantify the interactions between particles of different shapes (spheres, ellipsoids) and the carrier fluid at different regimes (from Stokes to inertial). Two methods have been developed to extract hydrodynamic forcesand heat transfers on immersed boundaries representing the particles. Validations have been conducted for various configuration of particles: from an isolated sphere and spheroid to Face-Centered Cubic to a random arrangement of spheres. A correlation of the Nusselt number for an isolated prolate spheroid past by a uniform flow is proposed.
|
2 |
Interaction d'une fibre et d'un écoulement en géométrie confinéeSemin, Benoît 22 September 2010 (has links) (PDF)
Le déplacement d'objets allongés dans un fluide se retrouve dans de nombreux domaines tels que la récupération du pétrole, la production du papier ou la nage de micro-organismes. Dans ce travail, nous étudions le comportement d'une fibre cylindrique longue dans un écoulement en géométrie confinée (fracture, canal microfluidique). Dans un premier temps, les forces de trainée exercées sur la fibre ont été déterminées expérimentalement et numériquement en fonction de son orientation et de sa position dans l'ouverture. Lorsque la fibre est parallèle à l'écoulement, elle le perturbe faiblement et une modélisation 2D est suffisante ; au contraire, lorsqu'elle est perpendiculaire, l'écoulement devient 3D quand le blocage est incomplet. Pour cette orientation, la portance est suffisante pour maintenir l'objet au centre de l'écoulement. Pour un nombre de Reynolds de l'ordre de 20, cette position devient instable : le cylindre oscille entre les deux parois. Le seuil de l'instabilité est inférieur au seuil d'émission des tourbillons de Bénard-Von Kármán. La position du cylindre est modélisée par une équation de Van der Pol qui prédit quantitativement la bifurcation de Hopf du système. Une interprétation hydrodynamique des coefficients de cette équation est présentée. Nous présentons et validons ensuite une méthode de traitement d'image, qui détermine de manière analytique la forme d'une fibre avec une précision sub-pixel. De plus, l'angle du vecteur tangent et la courbure de la fibre - essentielle car reliée à son moment fléchissant - sont mesurés avec précision.
|
3 |
Mécanismes moléculaires de la colonisation de l’endothélium par Neisseria meningitidis / Molecular mechanisms of endothelium colonization by Neisseria meningitidisSoyer, Magali 28 September 2012 (has links)
Les infections bactériennes touchant la circulation sanguine conduisent à un vaste éventail de graves pathologies, comme les chocs septiques ou les infections locales (endocardites et méningites). Neisseria meningitidis colonise avec succès l’endothélium vasculaire et cause des sepsis sévères. Ces infections résultent de la colonisation des cellules endothéliales de l’hôte, étape clef de la pathophysiologie à laquelle les travaux présentés dans ce manuscrit se sont intéressés. La colonisation de l’endothélium par N. meningitidis est un processus complexe qui implique l’adhésion et la multiplication des bactéries à la surface des cellules endothéliales dans le contexte particulier de la circulation sanguine, où des forces mécaniques sont générées par le flux sanguin sur les objets circulants. Bien que de nombreuses études se soient intéressées à l’interaction entre les cellules endothéliales et N. meningitidis, plusieurs aspects demeurent incertains comme par exemple l’impact des contraintes générées par le flux sanguin et la participation relative des deux partenaires de l’interaction dans la colonisation de l’endothélium par N. meningitidis.L’adhésion de la bactérie à la surface des cellules endothéliales est dépendante de facteurs bactériens (les pili de type IV, PT4) et induit une réponse de la part de la cellule hôte, qui se traduit par un remodelage de la membrane plasmique et une réorganisation du cytosquelette d’actine sous les microcolonies. Dans un premier temps, ces travaux de thèse montrent que la réponse cellulaire induite par N. meningitidis participe activement à la colonisation. En effet, la formation de projections membranaires permet à chaque bactérie de la microcolonie d’établir des contacts avec la cellule hôte, nécessaires à la résistance des microcolonies face aux forces mécaniques générées par le flux sanguin. De plus, nous montrons que la protéine PilV, composant des PT4, est impliquée dans le remaniement de la membrane plasmique et la réorganisation du cytosquelette. Nous avons développé une méthode combinant vidéo-microscopie et analyse de fluorescence pour décrypter les événements précoces prenant place lors du contact entre les bactéries et la surface des cellules hôtes. Nous avons alors montré que le remodelage de la membrane induit par N. meningitidis ne dépend pas de la réorganisation du cytosquelette d’actine au site d’infection mais plutôt des propriétés intrinsèques de la bicouche lipidique.Dans un second temps, nous nous sommes intéressés aux étapes tardives de l’infection, c'est-à-dire à l’initiation d’un nouveau cycle de colonisation. Bien que solidement ancrées à la surface des cellules par l’intermédiaire des projections membranaires, quelques bactéries se détachent des microcolonies pour coloniser des nouveaux sites au sein de l’hôte. Nous avons démontré l’importance de modifications post-traductionnelles de la piline majeure dans cette étape de l’infection et caractérisé les mécanismes impliqués.Cette étude a permis d’affiner les mécanismes impliqués dans l’induction de la réponse cellulaire induite par N. meningitidis et son impact sur la colonisation efficace de l’endothélium par ce pathogène. / Bacterial infections targeting the bloodstream lead to a wide array of severe clinical manifestations, such as septic shock or focal infections (endocarditis and meningitis). Neisseria meningitidis colonizes successfully the vascular wall and causes severe sepsis. Such infections result from an efficient colonization of host endothelial cells, a key step in meningococcal diseases which has been the subject of the work presented here. Endothelium colonization by N. meningitidis is a complex process implying bacterial adhesion and multiplication on the endothelial cell surface in the specific context of the bloodstream, where mechanical forces generated by the blood flow are applied on circulating bacteria. Even though many studies focused on the interaction between N. meningitidis and the endothelial cell, many aspects remain elusive, such as the impact of shear stress generated drag forces and the relative contribution of the two partners involved in this interaction.Adhesion to the endothelial cell surface is dependent on bacterial factors called type IV pili (Tfp) and leads to induction of a host cell response, characterized by a local remodeling of the plasma membrane and reorganization of actin cytoskeleton underneath bacterial microcolonies. First, we have shown that the cellular response induced by N. meningitidis actively participate in the colonization process. Indeed, membrane deformation allows contact with every bacterium inside the microcolony, which is necessary for microcolony resistance to mechanical forces. Additionally, we have demonstrated that the PilV protein, a Tfp component, is involved in plasma membrane remodeling and actin cytoskeleton reorganization. We designed a method combining high resolution live-cell fluorescence video-microscopy and fluorescence quantification to decipher the early events induced on contact of bacterial aggregates with the host cell surface. Using this technique we have shown that membrane remodeling does not rely on actin cytoskeleton reorganization but rather on intrinsic properties of the lipid bilayer. Second, we focused on latter steps of the infection process when initiation of a new colonization cycle is initiated. While firmly attached to the host cell surface through the membranous projections, some bacteria can detach from the microcolony to disseminate throughout the host. We have demonstrated the importance of post-translational modification of the major piline in this step and characterized the underlying mechanisms.This work allows refinement of the molecular mechanisms involved in the induction of the cellular response induced by N. meningitidis and its impact on successful endothelium colonization by this pathogen.
|
Page generated in 0.0585 seconds