• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 2
  • Tagged with
  • 19
  • 19
  • 18
  • 17
  • 9
  • 8
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude de la régulation de la production de l’oxyde nitrique, dans les cellules endothéliales, en réponse à un ß bloquant de troisième génération à action antihypertensive : Implication des filaments d'actines du cytosquelette / Regulation of nitric oxide production, on endothelial cells, in response to a third generation ß-blocker with antihypertensive action : Actin filaments involvement

Kadi, Assia 16 December 2008 (has links)
L’hypertension artérielle (HTA) constitue l’une des maladies les plus répandues dans notre société. L’une de ses causes consiste en une rigidité de la paroi artérielle. Cette dernière est régulée par une balance entre agents vasoconstricteurs et vasodilatateurs. L’oxyde nitrique (NO) est un vasodilatateur produit par les cellules endothéliales (CE) en réponse aux stimulations biochimiques (acétylcholine, insuline,…) ou mécanique (cisaillement). Son rôle principal consiste en la relaxation des cellules musculaires lisses (CML) afin d’adapter le vaisseau sanguin aux contraintes qui lui sont imposées. Il s’avère, selon la littérature, que NO est impliqué dans le mode d’action de certains médicaments dirigés contre l’HTA. Celui qui nous intéresse dans cette étude est le Nébivolol. Dans la littérature, il a été rapporté que la production de NO et la structure du cytosquelette d’actine sont intimement liées et que le Nébivolol entraîne la production de NO par les CE. Le but de ce travail a été d’étudier l’implication des filaments d’actine du cytosquelette dans le mode d’action du Nébivolol sur les CE, puis d’évaluer son impact sur l’activité de la eNOS. Nous avons trouvé que le Nébivolol entraîne une augmentation de la production de NO via la dépolymérisation des filaments d’actine pendant la première heure de culture. Cette dépolymérisation résulte en la libération, la translocation péri-nucléaire et la phosphorylation de la eNOS par les Akt. Au-delà d’une heure d’incubation avec le Nébivolol, les monomères d’actine se repolymérisent, entraînant la déphosphorylation de la eNOS et la diminution de la production de NO. Toutefois, il semblerait que la formation des fibres de stress ne soit pas le seul mécanisme d’inhibition de la eNOS. En effet, nous avons montré que la translocation de l’enzyme dans la région péri-membranaire contribue à son inhibition à la suite de la perturbation de l’organisation des filaments d’actine. / Hypertension is one of the most widespread diseases which is caused by a rigidity of the vascular wall. The arteries rigidity is controlled by several vasoconstrictor and vasodilator agents. Nitric oxide (NO) is a vasodilator agent, produced by the endothelial cell (EC) in response to biochemical (acetylcholine, insulin,…) or mechanical (shearing) stimulations. Its main function is to induce smouth muscle cells (SMC) relaxation to adapt the blood vessel to the imposed forces. It has been shown in the literature, that NO is implicated in the target action of some drugs, as Nébivolol, which is directed against hypertension. We know according to the literature that NO production and the structure of the actin cytoskleton are linked and that Nébivolol induces NO production. The aim of this work was to study the implication of cytoskeleton actin filaments in the Nébivolol action in EC and to evaluate the eNOS involvement in the mechanism. We found that Nébivolol increased NO production via a depolymerization of actin filaments during the first hour of incubation. This depolymerization resulted in the peri-nuclear translocation and the phosphorylation of the eNOS by Akt. After the first hour of incubation with Nébivolol, actin monomers were repolymerized leading to the dephosphorylation of the eNOS and the reduction in the NO production. However, it seems that the stress fibers formation is not the only mechanism required for eNOS inhibition. In fact, we have shown that eNOS translocation in the peri-membranar area, inhibited the enzyme activity after actin filaments disruption.
2

Caractérisation des RhoGTPases et des voies de signalisation impliquées dans l'assemblage du virus HIV-1 / Characterisation of RhoGTPases and signaling pathways involved in HIV-1 Gag assembly and particle release

Thomas, Audrey 19 April 2013 (has links)
Le cycle réplicatif du HIV-1 aboutit à la formation de virions qui s’assemblent dans des microdomaines spécifiques localisés à la membrane plasmique ou sur des compartiments intracellulaires particuliers, nommés VCC pour « Virus-Containing Compartments ». Selon les cas, ces virions sont ensuite relâchés par bourgeonnement ou exocytose. Ces étapes nécessitent un remodelage membranaire via le cytosquelette d’actine, ce qui est régulé par des voies de signalisation contrôlées par les RhoGTPases. Certains résultats suggèrent l’implication de ces protéines dans la biogénèse du HIV-1. Cependant, il reste à caractériser les mécanismes moléculaires spécifiquement impliqués dans la régulation cellulaire de l’assemblage viral.L’objectif de cette thèse consistait donc à identifier les RhoGTPases et les effecteurs des voies de signalisation spécifiquement requis durant la biogénèse virale. Cette étude a porté sur les GTPases Rac1, Cdc42 et RhoA car elles ont un rôle majeur dans la régulation du cytosquelette d’actine et de la dynamique membranaire. Elle a été réalisée sur les lymphocytes T (LT) Jurkat, cellules modèles pour l’infection HIV-1 où les virions s’assemblent à la membrane plasmique ; et les cellules adhérentes HeLa où les virions peuvent aussi s’assembler au niveau des VCC. Nos résultats ont révélé le rôle de la voie de signalisation Rac1-IRSp53-Wave2 dans l’assemblage de Gag à la membrane plasmique des LT Jurkat, et un rôle pour RhoA dans la régulation de l’assemblage viral suggéré au niveau des VCC. Ce travail améliore la compréhension des voies de signalisation cellulaires sollicitées lors de l’assemblage du HIV-1, en particulier dans les lymphocytes T, cibles du virus. / During the last steps of HIV-1 replication cycle, the Gag proteins come together in particular microdomains located at the plasma membrane or in some intracellular compartments, named “Virus-containing compartments”. Then, the viral particles are released by budding or exocytosis. All these steps involve membrane and actin cytoskeleton remodeling which is regulated by the RhoGTPases. In fact, some data suggest the implication of such proteins in HIV-1 biogenesis, but molecular mechanisms underlying this effect is not yet understood. During this thesis, our aim was to characterize the RhoGTPases and the effectors of cell signaling pathways which are specifically required during HIV-1 particle biogenesis. We focused our study on the GTPases Rac1, Cdc42 and RhoA because their influence on membrane and actin cytoskeleton was essential. Moreover, this work was accomplished on Jurkat T lymphocytes which are model cells to HIV-1 infection where the Gag proteins assemble at the plasma membrane, and on HeLa cells where the Gag proteins can also assemble on virus-containing compartments. Our results showed the requirement of the Rac1-IRSp53-Wave2 signaling pathway for HIV-1 Gag assembly at the plasma membrane of Jurkat T cells, and a role for RhoA GTPase in the regulation of viral particle assembly on virus-containing compartments in HeLa cells. This study improved understanding of cell signaling pathways required during the HIV-1 particle biogenesis and release, particularly in T cells which are the main host cell for HIV-1.
3

Régulation de l’activité des GTPases de la famille Rho : implication dans la migration et l’invasion cellulaire / Regulation of RhoGTPases family : implication in cell migration and invasion

Bidaud-Meynard, Pierre-Aurélien 21 December 2011 (has links)
Les GTPases de la famille Rho sont les principaux régulateurs du remodelage du cytosquelette d’actine lors de la migration et l’invasion cellulaire. En particulier, deux membres de cette famille sont importants dans ce processus : les GTPases RhoA et Rac1. En effet, il existe une balance d’activité de ces GTPases, responsables respectivement de la contraction cellulaire et de la formation d’extensions cytoplasmiques, des étapes clefs de la migration. L’objectif de ce travail de thèse a été d’étudier la régulation de ces protéines dans la migration et l’invasion cellulaire. Pour cela, plusieurs stratégies ont été entreprises. Tout d’abord, une étude structure/fonction de la protéine p190RhoGAP-A (p190A), un des régulateurs majeurs de la GTPase RhoA, a été réalisée. Cette étude a permis de mettre en évidence un domaine, appelé PLS pour « protrusion localization sequence », permettant à cette protéine de se localiser au niveau des extensions membranaires appelées « replis membranaires » et « lamellipodes » où RhoA est régulée localement. D’autre part, un mutant délété de ce domaine, appelé PLSp190A, ne peux pas se localiser au niveau de ces structures et a un impact négatif sur leur formation et la migration cellulaire. De plus, l’analyse de ce mutant a révélé que le domaine PLS était impliqué dans la régulation négative de p190A. Ainsi, nous avons mis en évidence un nouveau domaine de p190A responsable de sa localisation intracellulaire et de sa fonction. La deuxième partie de ce travail de thèse a été consacrée à la mise en place d’un outil de mesure de l’activité des GTPases Rho par la technologie Alphascreen. Ce test a permis de mesurer l’activité de Rac1 in vitro et in cellulo mais a également été appliqué à un crible en vue d’identifier de nouvelles molécules régulatrices de Rac1. Ainsi, ce travail de thèse, en abordant par plusieurs angles la régulation des GTPases de la famille Rho, a permis d’apporter des informations et des outils pour la compréhension des mécanismes complexes régissant la capacité des cellules à se mouvoir dans leur environnement. / RhoGTPases are major regulators of the actin cytoskeleton during cell migration and invasion. Particularly, the two members of the RhoGTPase family, RhoA and Rac1 play important roles in these processes. Indeed, a reciprocal balance between these GTPases’activity that leads to cell contraction and cell protrusion formation, determines cell movement. The aim of this PhD thesis was to study the regulation of RhoA and Rac1 during cell migration and invasion. To this end, various strategies were undertaken.We first performed a structure/function analysis of p190RhoGAP-A (p190A), a major negative regulator of RhoA. This led to the identification of a protrusion localization sequence (“PLS”) necessary and sufficient for p190A targeting to actin-based structures. A p190A mutant deleted of the PLS domain (PLS), does not localize to ruffles and lamellipodia, where RhoA is locally regulated during cell migration. This analysis also revealed that the PLS is required for the negative regulation of p190A activity. Finally, p190APLS expression has a dominant negative effect on the formation of actin protrusions and cell migration. Thus, we identified a novel functional domain of p190A required for its proper subcellular localization and functions. The second part of this PhD thesis was focused on the design of an Alphascreen technology-based assay to study GTPases activity. This assay allowed the measurement of Rac1 activity in vitro and in cellulo. Moreover, we used this assay to screen for new regulators of Rac1 activity. In conclusion, this work provides new insights and new tools for the understanding of RhoGTPase involvement in cell migration.
4

Rôles des protéines d’échafaudage Gab dans la signalisation et l’angiogenèse médiées par le VEGF

Caron, Christine 10 1900 (has links)
La protéine d’échafaudage Gab1 amplifie la signalisation de plusieurs récepteurs à fonction tyrosine kinase (RTK). Entre autres, elle promeut la signalisation du VEGFR2, un RTK essentiel à la médiation de l’angiogenèse via le VEGF dans les cellules endothéliales. En réponse au VEGF, Gab1 est phosphorylé sur tyrosine, ce qui résulte en la formation d’un complexe de protéines de signalisation impliqué dans le remodelage du cytosquelette d’actine et la migration des cellules endothéliales. Gab1 est un modulateur essentiel de l’angiogenèse in vitro et in vivo. Toutefois, malgré l’importance de Gab1 dans les cellules endothéliales, les mécanismes moléculaires impliqués dans la médiation de ses fonctions, demeurent mal définis et la participation du second membre de la famille, Gab2, reste inconnue. Dans un premier temps, nous avons démontré que tout comme Gab1, Gab2 est phosphorylé sur tyrosine, qu’il s’associe de façon similaire avec des protéines de signalisation et qu’il médie la migration des cellules endothéliales en réponse au VEGF. Cependant, contrairement à Gab1, Gab2 n’interagit pas avec le VEGFR2 et n’est pas essentiel pour l’activation d’Akt et la promotion de la survie cellulaire. En fait, nous avons constaté que l’expression de Gab2 atténue l’expression de Gab1 et l’activation de la signalisation médiée par le VEGF. Ainsi, Gab2 semble agir plutôt comme un régulateur négatif des signaux pro-angiogéniques induits par Gab1. La migration cellulaire est une des étapes cruciales de l’angiogenèse. Nous avons démontré que Gab1 médie l’activation de la GTPase Rac1 via la formation et la localisation d’un complexe protéique incluant la GEF VAV2, la p120Caténine et la Cortactine aux lamellipodes des cellules endothéliales en réponse au VEGF. De plus, nous montrons que l’assemblage de ce complexe corrèle avec la capacité du VEGF à induire l’invasion des cellules endothéliales et le bourgeonnement de capillaires, deux phénomènes essentiels au processus angiogénique. La régulation des RhoGTPases est également régulée par des inactivateurs spécifiques les « Rho GTPases activating proteins », ou GAPs. Nous décrivons ici pour la première fois le rôle de la GAP CdGAP dans les cellules endothéliales et démontrons son importance dans la médiation de la signalisation du VEGF via la phosphorylation sur tyrosine de Gab1 et l’activation des RhoGTPases Rac1 et Cdc42. Ainsi, dù à son importance sur l’activation de voies de signalisation du VEGF, CdGAP représente un régulateur crucial de la promotion de diverses activités biologiques essentielles à l’angiogenèse telles que la migration cellulaire, et le bourgeonnement de capillaires in vitro et d’aortes de souris ex vivo. De plus, les embryons de souris CdGAP KO présentent des hémorragies et de l’œdème, et ces défauts vasculaires pourraient être responsables de la mortalité de 44% des souris CdGAP knock-out attendues. Nos études amènent donc une meilleure compréhension des mécanismes moléculaires induits par le VEGF et démontrent l’implication centrale de Gab1 et des régulateurs des RhoGTPases dans la promotion de l’angiogenèse. Cette meilleure compréhension pourrait mener à l’identification de nouvelles cibles ou approches thérapeutiques afin d’améliorer le traitement des patients souffrant de maladies associées à une néovascularisation incontrôlée telles que le cancer. / The Gab1 scaffolding protein allows signaling of multiple Receptors Tyrosine Kinase (RTKs). Among other things, it allows VEGFR2 signaling, an essential RTK to mediate angiogenesis via VEGF in endothelial cells. In response to VEGF, Gab1 is tyrosine phosphorylated, resulting in the formation of a signaling protein complex involved in the remodeling of the actin cytoskeleton and the migration of endothelial cells. Gab1 is a key modulator of angiogenesis in vitro and in vivo. However, despite the importance of Gab1 in endothelial cells, the molecular mechanisms involved in mediating its functions remain poorly defined and the participation of the second family member, Gab2, remains unknown. Initially, we demonstrated that as with Gab1, Gab2 is tyrosine phosphorylated, it associates with similar signaling proteins and induces cell migration in response to VEGF in endothelial cells. However, Gab2 does not interact with VEGFR2 and is not essential for the activation of Akt and the promotion of cell survival. In fact, we found that the expression of Gab2 attenuates the expression of Gab1 and activation of VEGF-mediated signaling. In light of these results, we propose that in endothelial cells stimulated with VEGF, Gab2 acts as a negative regulator of pro-angiogenic signals induced by Gab1. Cell migration is a crucial step in angiogenesis, though, few studies have investigated the involvement of Gab1 in regulating different molecular mechanisms for actin remodeling leading to endothelial cell migration. We demonstrated that Gab1 mediates activation of Rac1 GTPase via the formation and localization of a protein complex including the GEF VAV2, p120 Catenin and Cortactin to lamellipodia of endothelial cells in response to VEGF. Furthermore, we show that the assembly of this complex correlates with the ability of VEGF to induce endothelial cell invasion and capillary sprouting, phenomena essential to the angiogenic process. RhoGTPases are also regulated by specific inactivators, "Rho GTPase activating proteins" or GAPs. The involvement of GAPs in promoting angiogenesis is relatively poorly described. Here we describe for the first time the role of the GAP CdGAP in endothelial cells and demonstrate its importance in mediating VEGF signaling via tyrosine phosphorylation of Gab1 and activation of Rac1 and Cdc42 RhoGTPases. Due to its importance in the activation of signaling pathways critical in VEGF signaling, CdGAP is thus an important protein for the regulation of various essential biological activities such as cell migration, sprouting and therefore in vitro and ex vivo angiogenesis. In addition, embryos of CdGAP knock-out mice exhibit vascular defects, excessive branching vessels, haemorrhages and edema which may be responsible for the 44% mortality seen in CdGAP knock-out mice expected. Our studies contribute to a better understanding of the molecular mechanisms induced by VEGF and demonstrate the central involvement of Gab1 and regulators of RhoGTPases in promoting angiogenesis. This understanding could lead to the identification of new targets and therapeutic approaches to improve the treatment of patients with uncontrolled neovascularization associated with diseases such as cancer.
5

Role of the actin cytoskeleton in breast cancer cell resistance to natural killer cells / Rôle du cytosquelette d'actine dans la résistance des cellules de cancer du sein à la lyse induite par les cellules "natural killers"

Al Absi, Antoun 06 July 2018 (has links)
L'évasion immunitaire tumorale joue un rôle central dans la progression tumorale et représente un obstacle majeur au succès des immunothérapies. Dans cette Thèse nous avons étudié le rôle du cytosquelette d’actine dans la résistance des cellules de cancer du sein à la lyse induite par les cellules "natural killers" (NKs). Nous avons trouvé que les cellules de cancer du sein résistantes échappent à l’attaques des cellules NKs par une accumulation importante et rapide d’actine près de la synapse immunologique, un processus que nous avons nommé "réponse actine". Nos analyses mécanistiques suggèrent que la réponse actine induit la polarisation d’autophagosomes vers la synapse immunologique et facilite ainsi la dégradation des molécules cytotoxiques sécrétées par les cellules NKs, tel que le ganzyme B, par autophagie. De plus, la réponse actine est associée au regroupement de ligands inhibiteurs à la synapse, suggérant qu’elle est au centre de plusieurs mécanismes de résistance. Dans leur ensemble, nos résultats constituent une base pour le développement d’approches thérapeutiques visant à interférer avec la réponse actine et à restaurer une réponse immunitaire anti tumorale efficace. / Tumor immune evasion plays a central role in cancer progression and is a major hurdle to effective immunotherapy. In this Thesis, we examine the role of the actin cytoskeleton in breast cancer cell resistance to natural killer (NK) cell-mediated cell lysis. We found that resistant breast cancer cells escape from NK-cell attack through a rapid and prominent accumulation of actin near the immunological synapse, a process we termed the “actin response”. Our mechanistic investigations suggest that the actin response drives autophagosome polarization toward the immunological synapse and thereby facilitates the autophagy-mediated degradation of NK cell-derived cytotoxic molecules such as granzyme B. In addition, the actin response was associated with inhibitory ligand clustering at the immunological synapse, suggesting that it is a common driver of different immune evasion mechanisms. Taken together, our data lays the groundwork for therapeutic approaches aimed at interfering with the actin response and restoring an effective anti-tumor immune response.
6

Mécanismes moléculaires de la colonisation de l’endothélium par Neisseria meningitidis / Molecular mechanisms of endothelium colonization by Neisseria meningitidis

Soyer, Magali 28 September 2012 (has links)
Les infections bactériennes touchant la circulation sanguine conduisent à un vaste éventail de graves pathologies, comme les chocs septiques ou les infections locales (endocardites et méningites). Neisseria meningitidis colonise avec succès l’endothélium vasculaire et cause des sepsis sévères. Ces infections résultent de la colonisation des cellules endothéliales de l’hôte, étape clef de la pathophysiologie à laquelle les travaux présentés dans ce manuscrit se sont intéressés. La colonisation de l’endothélium par N. meningitidis est un processus complexe qui implique l’adhésion et la multiplication des bactéries à la surface des cellules endothéliales dans le contexte particulier de la circulation sanguine, où des forces mécaniques sont générées par le flux sanguin sur les objets circulants. Bien que de nombreuses études se soient intéressées à l’interaction entre les cellules endothéliales et N. meningitidis, plusieurs aspects demeurent incertains comme par exemple l’impact des contraintes générées par le flux sanguin et la participation relative des deux partenaires de l’interaction dans la colonisation de l’endothélium par N. meningitidis.L’adhésion de la bactérie à la surface des cellules endothéliales est dépendante de facteurs bactériens (les pili de type IV, PT4) et induit une réponse de la part de la cellule hôte, qui se traduit par un remodelage de la membrane plasmique et une réorganisation du cytosquelette d’actine sous les microcolonies. Dans un premier temps, ces travaux de thèse montrent que la réponse cellulaire induite par N. meningitidis participe activement à la colonisation. En effet, la formation de projections membranaires permet à chaque bactérie de la microcolonie d’établir des contacts avec la cellule hôte, nécessaires à la résistance des microcolonies face aux forces mécaniques générées par le flux sanguin. De plus, nous montrons que la protéine PilV, composant des PT4, est impliquée dans le remaniement de la membrane plasmique et la réorganisation du cytosquelette. Nous avons développé une méthode combinant vidéo-microscopie et analyse de fluorescence pour décrypter les événements précoces prenant place lors du contact entre les bactéries et la surface des cellules hôtes. Nous avons alors montré que le remodelage de la membrane induit par N. meningitidis ne dépend pas de la réorganisation du cytosquelette d’actine au site d’infection mais plutôt des propriétés intrinsèques de la bicouche lipidique.Dans un second temps, nous nous sommes intéressés aux étapes tardives de l’infection, c'est-à-dire à l’initiation d’un nouveau cycle de colonisation. Bien que solidement ancrées à la surface des cellules par l’intermédiaire des projections membranaires, quelques bactéries se détachent des microcolonies pour coloniser des nouveaux sites au sein de l’hôte. Nous avons démontré l’importance de modifications post-traductionnelles de la piline majeure dans cette étape de l’infection et caractérisé les mécanismes impliqués.Cette étude a permis d’affiner les mécanismes impliqués dans l’induction de la réponse cellulaire induite par N. meningitidis et son impact sur la colonisation efficace de l’endothélium par ce pathogène. / Bacterial infections targeting the bloodstream lead to a wide array of severe clinical manifestations, such as septic shock or focal infections (endocarditis and meningitis). Neisseria meningitidis colonizes successfully the vascular wall and causes severe sepsis. Such infections result from an efficient colonization of host endothelial cells, a key step in meningococcal diseases which has been the subject of the work presented here. Endothelium colonization by N. meningitidis is a complex process implying bacterial adhesion and multiplication on the endothelial cell surface in the specific context of the bloodstream, where mechanical forces generated by the blood flow are applied on circulating bacteria. Even though many studies focused on the interaction between N. meningitidis and the endothelial cell, many aspects remain elusive, such as the impact of shear stress generated drag forces and the relative contribution of the two partners involved in this interaction.Adhesion to the endothelial cell surface is dependent on bacterial factors called type IV pili (Tfp) and leads to induction of a host cell response, characterized by a local remodeling of the plasma membrane and reorganization of actin cytoskeleton underneath bacterial microcolonies. First, we have shown that the cellular response induced by N. meningitidis actively participate in the colonization process. Indeed, membrane deformation allows contact with every bacterium inside the microcolony, which is necessary for microcolony resistance to mechanical forces. Additionally, we have demonstrated that the PilV protein, a Tfp component, is involved in plasma membrane remodeling and actin cytoskeleton reorganization. We designed a method combining high resolution live-cell fluorescence video-microscopy and fluorescence quantification to decipher the early events induced on contact of bacterial aggregates with the host cell surface. Using this technique we have shown that membrane remodeling does not rely on actin cytoskeleton reorganization but rather on intrinsic properties of the lipid bilayer. Second, we focused on latter steps of the infection process when initiation of a new colonization cycle is initiated. While firmly attached to the host cell surface through the membranous projections, some bacteria can detach from the microcolony to disseminate throughout the host. We have demonstrated the importance of post-translational modification of the major piline in this step and characterized the underlying mechanisms.This work allows refinement of the molecular mechanisms involved in the induction of the cellular response induced by N. meningitidis and its impact on successful endothelium colonization by this pathogen.
7

Influence de la petite protéine GTPasique Cdc42 sur la voie de sécrétion du canalCFTR dans des cellules épithéliales bronchiques / Influence of the small GTPase Cdc42 on the CFTR secretory pathway in epithelialairway cells

Clément, Romain 26 October 2012 (has links)
La mucoviscidose est causée par des mutations du gène CFTR (p.Phe508del étant la plus fréquente). Celui-ci code pour la protéine CFTR qui constitue un canal chlorure exprimé à la face apicale des cellules épithéliales. Au niveau du reticulum endoplasmique (RE), le contrôle de qualité conformationnelle oriente la majorité du CFTR en cours de repliement vers une voie de dégradation. Une fraction limitée du WT-CFTR parvient cependant à se replier correctement et peut ensuite progresservers la surface cellulaire, contrairement au Phe508del-CFTR (qui est néanmoins fonctionnel). Lorsque des formes mutées sont exportées à partir du RE, grâce à des traitements correcteurs, elles sont alors instables à la membrane plasmique. Par ailleurs, il a été montré que l'organisation des microfilaments d'actine participe à l'ancrage du canal au cytosquelette et à sa stabilité. Or, la petite GTPase Cdc42 influence la dynamique de nucléation de l'actine fibrillaire. Au cours de nos travaux, nous avons testé l'implication de Cdc42 et de certains de ses effecteurs dans la régulation de WT-CFTR dans des cellules épithéliales bronchiques. Dans ce cadre, la fonction de la voie Cdc42 a été perturbée par des traitements pharmacologiques et par ARN interférence. Les résultats obtenus, principalement par biotinylation de surface, ont permis de proposer que (1) la protéine Cdc42 participe à ladégradation de formes mal repliées de CFTR dans les étapes précoces et tardives de la voie de sécrétion et (2) la voie Cdc42, par son implication dans l'organisation de l'actine F corticale, affecte l’ancrage du canal chlorure au cytosquelette et régule ainsi son recrutement dans des vésicules d'internalisation. / Cystic Fibrosis is caused by CFTR gene mutations (p.Phe508del being the most frequently encountered). The CFTR protein functions as a chloride channel expressed at the plasma membrane of epithelial cells. Its productive folding in the endoplasmicreticulum (ER) is poorly efficient and unfolded proteins are therefore targeted to degradation. Nevertheless, a limited fraction of WT-CFTR acquires a native conformation and then progesses into the secretory pathway. In the case of Phe508del-CFTR, virtually all channels are degraded at this step except through corrector treatments. Under these conditions the mutant remains unstable at the plasma membrane (although it is functionnaly competent). Furthermore, it has been shown that fibrillar actin organization is involved in CFTR tethering to the cytoskeleton and channel stability. Moreover, the small GTPase Cdc42 promotes F actin nucleation. In the present study, we aimed at testing the involvement of Cdc42, and of some of its effectors, in WT-CFTR regulation in epithelial airway cells. In this context, Cdc42 pathway function was altered through pharmacological treatments or siRNAmediated depletions. Our results, mainly obtained via cell surface biotinylation assays, led us to propose that (1) Cdc42 is involved in misfolded CFTR degradation at early and late steps of the secretory pathway, and (2) Cdc42 pathway, through its F actin organization function, affects CFTR anchoring to the cytoskeleton and thus regulates its endocytosis.
8

Etude biochimique comparative des "Actin Depolymerizing Factors"(ADFs) d'Arabidopsis : activité inattendue de pontage des filaments d'actine pour les ADFs appartenant à la sous-classe III / Comparative biochemical analysis of Arabidopsis Actin-Depolymerizing Factors (ADFs) : unexpected actin-crosslinking activity for subclass III ADFs

Tholl, Stéphane 02 March 2012 (has links)
L'organisation et la dynamique du cytosquelette d'actine sont finement régulées par une multitude de "actin-binding proteins" (ABPs). Parmi ces dernières, les ADFs (actin-depolymerizing factors) jouent un rôle majeur dans le turnover des filaments d'actine en induisant leur découpage et en facilitant leur dépolymérisation. Arabidopsis thaliana possède 11 protéines ADFs fonctionnelles qui peuvent être classées en 4 sous-classes sur la base de leur profil d'expression et liens phylogénétiques. Nous démontrons que l’ADF5 et l’ADF9 de la sous-classe III sont des ADFs atypiques puisqu’elles n’induisent pas la dépolymérisation des filaments d’actine. Au contraire, elles montrent une forte capacité à stabiliser et ponter les filaments d’actine en longs câbles in vitro ainsi que in vivo. Nous décrivons la caractérisation d’un nouveau mutant knockout d’Arabidopsis. Les données suggèrent un rôle d’ADF9 dans l’élongation cellulaire. Ainsi, l’hypocotyle est significativement plus long dans les mutants adf9 que dans les plantules sauvages, et ce phénotype est amplifié par des conditions de croissance à l’obscurité dans lesquelles le gène ADF9 est normalement préférentiellement exprimé. L’analyse des cellules épidermiques d’hypocotyle indique que ce phénotype est essentiellement dut à une augmentation de l’élongation cellulaire. De manière surprenante, les plantules mutantes adf9 présentent également des racines plus courtes que les contrôles, suggérant un lien complexe entre l’organisation du cytosquelette d’actine et l’élongation cellulaire. Finalement, la capacité réduite du cal issue des plantules adf9 à proliférer suggère également un rôle d’ADF9 dans la division cellulaire. / Actin cytoskeleton organization and dynamics are tightly regulated by many actin-binding proteins (ABPs). Among ABPs, the actin-depolymerizing factors (ADFs) play a major role in actin filament turnover by promoting actin filament severing and facilitating pointed end depolymerization. Arabidopsis thaliana has 11 functional proteins that can be classified into four subclasses according to their expression profile and phylogenetic relationships. We provide evidence that subclass III ADF5 and ADF9 are unconventional ADFs since they do not display typical actin filament depolymerizing activities. Instead, they exhibit opposite activities with a surprisingly high ability to stabilize and crosslink actin filaments into long and thick actin bundles both in vitro and in live cells. Competition experiments with ADF1 support that ADF9 antagonizes the depolymerizing activity of conventional ADFs. We report the characterization of a not yet described knockout Arabidopsis mutant. Data strongly suggests a role for ADF9 in cell elongation. Indeed, hypocotyls are significantly longer in adf9 mutant than in wild- type seedlings, and this phenotype is enhanced in dark growth conditions in which the ADF9 gene is normally preferentially expressed. The analysis of hypocotyl epidermal cells indicates that this phenotype is essentially due to an increase of cell expansion. Surprisingly, adf9 seedlings exhibit shorter roots than control plants, suggesting a complex link between actin cytoskeleton organization and cell elongation. Finally, the reduced ability of adf9- derived calli to proliferate supports a role for ADF9 in cell division as well.
9

Analyse fonctionnelle de cIAP1 : identification d'un rôle dans le remodelage du réseau d'actine / CIAP1 functional analysis : a role in actin remodeling

Marivin, Arthur 27 February 2012 (has links)
Cellular Inhibitor of Apoptosis Protein 1 (cIAP1) de la famille des IAP (Inhibitor of ApoptosisProtein) est un oncogène à activité E3-ubiquitine ligase. Notre équipe s’intéresse aux processus de différenciation des cellules hématopoïétique. cIAP1 est localisée dans le noyau des précurseurs hématopoïétiques exprimant le marqueur CD34. Lors de leur différenciationnotamment en macrophages ou en cellules dendritiques, cIAP1 est exclue du noyau. L’objectif de ma thèse a été de caractériser de nouvelles fonctions nucléaires et cytoplasmiques de cIAP1. Mes résultats ont contribués à mettre en évidence une fonction nucléaire de cIAP1 dans la régulation du cycle cellulaire via le contrôle du facteur de transcription E2F1. Dans le cytoplasme, cIAP1 est un régulateur de l’activation de la signalisation NF-kB et TNF-α. cIAP1 est un déterminant de la réponse des cellules au TNF-a, favorisant l’activation de NF-kB aux dépens de la mort cellulaire. Le TNF-α est aussi capable de moduler le cytosquelette d’actine et les propriétés morphologiques et migratoires des cellules. Dans les fibroblastes, il induit la formation de fines protrusions membranaires riches en actine appelées filipodes. Mes travaux ont montrés que cIAP1, associée à son partenaire historique TRAF2, régule la formation de ces filipodes. Elle est capable d’interagirdirectement avec la RhoGTPase Cdc42 et de contrôler son activation après un traitement par le TNF- α, mais aussi EGF. De plus, cIAP1 régule aussi la polarisation de l’appareil de Golgi, une fonction spécifiquement attribuée à Cdc42. Cette nouvelle fonction de cIAP1 dans le contrôle de Cdc42 pourrait contribuer aux propriétés oncogéniques de cIAP1 / Cellular Inhibitor of Apoptosis Protein 1 (cIAP1), a IAP family member (Inhibitor of ApoptosisProtein) is an E3 ubiquitin ligase which displays oncogenic properties. The research project of our team is focused on hematopoietic differentiation. cIAP1 is localized in the nucleus of hematopoietic precursors CD34+, and is excluded to the cytoplasm along macrophage and dendritic cell differentiation. The aim of my thesis was to characterize new nuclear and cytoplasmic fonctions of cIAP1. I have contributed to identify a nuclear function of cIAP1 in the regulation of cell cycle through a control of E2F1 transcription factor. In the cytoplasm, cIAP1 is a well-known modulator of NF-kB and TNF-α signaling pathway. It can determine the response of cells to TNF-α, through stimuling the canonical activation of NF-kB and inhibiting cell death. TNF-α can also promote cytoskeleton remodeling which determine morphogenetic properties including morphology or motility. My results suggest a role for cIAP1, when associated its partner TRAF2, in the control of actin rich protrusions called filipodia upon TNF-α stimulation. cIAP1 can interact and control Cdc42 activation, a member of Rho GTPases protein family. cIAP1/TRAF2 appears to control other process controlled by Cdc42 including, filipodia formation in response to EGF, or Golgi polarization. This function of cIAP1 in the control of Cdc42 could contribute to cIAP1 oncogenic properties
10

Analyse des propriétés oncogéniques de cIAP1 : contribution de ses partenaires cdc42 et E2F1 / cIAP1 oncogenic properties analysis : contribution of its partners cdc42 and E2F1

Berthelet, Jean 04 November 2014 (has links)
La protéine cIAP1 (cellular Inhibitor of Apoptosis Protein-1) de la famille des IAP (Inhibitor of Apoptosis Protein) est un oncogène avec une activité E3 ubiquitine ligase. Au cours de la différenciation de nombreux modèles cellulaires (macrophages, cellules dendritiques, cellules épithéliales du colon, cellules souches hématopoïetiques, cardiomyocytes), cIAP1 sort du noyau pour se relocaliser dans le cytoplasme, cette relocalisation étant associée à un arrêt de prolifération. La plupart des fonctions connues de cIAP1 sont liées à sa localisation cytoplasmique où il est un régulateur important des voies de signalisation des récepteurs du TNF-a et de NF-?B. Cependant, cIAP1 est principalement exprimée dans le noyau de différents types cellulaires ce qui n’est pas en accord avec son rôle dans la signalisation cellulaire. Mon travail de thèse a permis d’identifier un rôle de cIAP1 dans la prolifération cellulaire. cIAP1 interagit avec le facteur de transcription E2F1 et favorise son recrutement sur les promoteurs des Cycline E et A impliquées dans les transitions G1/S et G2 du cycle cellulaire, ce qui augmente l’expression des transcrits et des protéines de ces deux cibles. Il semblerait que par cette activité, cIAP1 régule la prolifération des cellules et soit important dans l’équilibre entre la prolifération et la différenciation, deux mécanismes cellulaires étroitement liés. Dans un second travail, nous avons montré que cAIP1 est déterminant dans le remodelage du cytosquelette d’actine en réponse au TNF-a. Dans les fibroblastes, le TNF-a induit la formation de fines protrusions membranaires riches en actine appelées filipodes, cette formation étant régulée par cdc42. Mes travaux ont montrés que cIAP1, associé à son partenaire historique TRAF2, régule la formation de ces filipodes. Il est capable d’interagir directement avec la RhoGTPase Cdc42 et de contrôler son activation après un traitement par le TNF- a, mais aussi par l’EGF. De plus, cIAP1 régule également la transformation oncogénique par HRas en augmentant les propriétés invasives et migratoires des cellules. Ces nouvelles fonctions de cIAP1 pourraient contribuer à ses propriétés oncogéniques. / The inhibitor of apoptosis protein cIAP1 (cellular inhibitor of apoptosis protein-1) from the IAP family (Inhibitor of Apoptosis Protein) is an oncogene with an E3 ubiquitin ligase activity. cIAP1 is relocalized from the nucleus to the cytoplasm during the differentiation of many kind of cellular models (macrophages, dendritic cells, colon epithelial cells, hematopoietic stem cells, cardiomyocytes) and this relocalization is associated with a proliferation arrest. The well-known functions of cIAP1 are associated with its cytoplasmic localization, where it regulates the TNFa receptors and NF-?B signaling pathways. However, cIAP1 is mainly expressed in the nucleus on many cell types which is not in accordance with its cell signalling activity. My work identifies a function of cIAP1 in proliferation regulation. cIAP1 interacts with E2F1 transcription factor and favors its recruitment on Cyclins E and A promoters, both involved in G1/S and G2 phases of the cell cycle, which leads to high level of transcript and protein expression of these two targets. It seems that cIAP1 regulates the cellular proliferation and is important for the balance between proliferation and differentiation, two mechanisms tightly connected in cells. In a second work, we showed that cIAP1 is critical for actin cytoskeleton modification upon TNF-a treatment. In fibroblasts, TNF-a induce filipodia formation, a process regulated by cdc42. Our work showed that cIAP1, when associated with its partner TRAF2, interact and control cdc42 activation, a member of Rho GTPases protein family. We also observed that cIAP1 regulates HRas driven oncogenic transformation and increases the motility and invasiveness of the cells. These new functions of cIAP1 in the control of transcription factor and cell cytoskeleton could be important for its oncogenic properties.

Page generated in 0.4713 seconds