• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Regulation of skeletal muscle insulin sensitivity by PAK1

Tunduguru, Ragadeepthi 06 September 2016 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Insulin-stimulated glucose uptake into skeletal muscle cells requires translocation of the glucose transporter-4 (GLUT4) from the cell interior to the plasma membrane. Insulin-stimulated GLUT4 vesicle translocation is dysregulated in Type 2 diabetes (T2D). The Group I p21–activated kinase (PAK1) is a required element in insulin-stimulated GLUT4 vesicle translocation in mouse skeletal muscle in vivo, although its placement and function(s) in the canonical insulin signaling cascade in skeletal muscle cells, remain undetermined. Therefore, the objective of my project is to determine the molecular mechanism(s) underlying the requirement for PAK1 in the process of insulin-stimulated GLUT4 vesicle translocation and subsequent glucose uptake by skeletal muscle cells. Toward this, my studies demonstrate that the pharmacological inhibition of PAK1 activation blunts insulin-stimulated GLUT4 translocation and subsequent glucose uptake into L6-GLUT4myc skeletal myotubes. Inhibition of PAK1 activation also ablates insulin-stimulated F-actin cytoskeletal remodeling, a process known to be required for mobilizing GLUT4 vesicles to the plasma membrane. Consistent with this mechanism, PAK1 activation was also required for the activation of cofilin, another protein implicated in F-actin remodeling. Interestingly, my studies reveal a novel molecular mechanism involving PAK1 signaling to p41-ARC, a regulatory subunit of the cytoskeletal Arp2/3 complex, and its interactions with another cytoskeletal factor, N-WASP, to elicit the insulin-stimulated F-actin remodeling in skeletal muscle cells. Pharmacological inactivation of N-WASP fully abrogated insulin-stimulated GLUT4 vesicle translocation to the cell surface, coordinate with blunted F-actin remodeling. Furthermore, my studies revealed new insulin-induced interactions amongst N WASP, actin, p41-ARC and PAK1; inactivation of PAK1 signaling blocked these dynamic interactions. Taken together, the above studies demonstrate the significance of PAK1 and its downstream signaling to F-actin remodeling in insulin-stimulated GLUT4 vesicle translocation and glucose uptake, revealing new signaling elements that may prove to be promising targets for future therapeutic design.
2

An Atat1/Mec-17-Myosin II axis controls ciliogenesis

Rao, Yanhua January 2013 (has links)
<p>Primary cilia are evolutionarily conserved, acetylated microtubule-based organelles that transduce mechanical and chemical signals. Primary cilium assembly is tightly controlled and its deregulation causes a spectrum of human diseases. Formation of primary cilium is a collaborative effort of multiple cellular machineries, including microtubule, actin network and membrane trafficking. How cells coordinate these components to construct the primary cilia remains unclear. In this dissertation research, we utilized a combination of cell biology, biochemistry and light microscopy technologies to tackle the enigma of primary cilia formation, with particular focus on isoform-specific roles of non-muscle myosin II family members. We found that myosin IIB (Myh10) is required for cilium formation. In contrast, myosin IIA (Myh9) suppresses cilium formation. In Myh10 deficient cells, Myh9 inactivation significantly restores cilia formation. Myh10 antagonizes Myh9 and increases actin dynamics, permitting pericentrosomal preciliary complex formation required for cilium assembly. Importantly, Myh10 is upregulated upon serum starvation-induced ciliogenesis and this induction requires Atat1/Mec-17, the microtubule acetyltransferase. Our findings suggest that Atat1/Mec17-mediated microtubule acetylation is coupled to Myh10 induction, whose accumulation overcomes the Myh9-dependent actin cytoskeleton, thereby activating cilium formation. Thus, Atat1/Mec17 and myosin II coordinate microtubules and the actin cytoskeleton to control primary cilium biogenesis.</p> / Dissertation
3

Caractérisation des RhoGTPases et des voies de signalisation impliquées dans l'assemblage du virus HIV-1 / Characterisation of RhoGTPases and signaling pathways involved in HIV-1 Gag assembly and particle release

Thomas, Audrey 19 April 2013 (has links)
Le cycle réplicatif du HIV-1 aboutit à la formation de virions qui s’assemblent dans des microdomaines spécifiques localisés à la membrane plasmique ou sur des compartiments intracellulaires particuliers, nommés VCC pour « Virus-Containing Compartments ». Selon les cas, ces virions sont ensuite relâchés par bourgeonnement ou exocytose. Ces étapes nécessitent un remodelage membranaire via le cytosquelette d’actine, ce qui est régulé par des voies de signalisation contrôlées par les RhoGTPases. Certains résultats suggèrent l’implication de ces protéines dans la biogénèse du HIV-1. Cependant, il reste à caractériser les mécanismes moléculaires spécifiquement impliqués dans la régulation cellulaire de l’assemblage viral.L’objectif de cette thèse consistait donc à identifier les RhoGTPases et les effecteurs des voies de signalisation spécifiquement requis durant la biogénèse virale. Cette étude a porté sur les GTPases Rac1, Cdc42 et RhoA car elles ont un rôle majeur dans la régulation du cytosquelette d’actine et de la dynamique membranaire. Elle a été réalisée sur les lymphocytes T (LT) Jurkat, cellules modèles pour l’infection HIV-1 où les virions s’assemblent à la membrane plasmique ; et les cellules adhérentes HeLa où les virions peuvent aussi s’assembler au niveau des VCC. Nos résultats ont révélé le rôle de la voie de signalisation Rac1-IRSp53-Wave2 dans l’assemblage de Gag à la membrane plasmique des LT Jurkat, et un rôle pour RhoA dans la régulation de l’assemblage viral suggéré au niveau des VCC. Ce travail améliore la compréhension des voies de signalisation cellulaires sollicitées lors de l’assemblage du HIV-1, en particulier dans les lymphocytes T, cibles du virus. / During the last steps of HIV-1 replication cycle, the Gag proteins come together in particular microdomains located at the plasma membrane or in some intracellular compartments, named “Virus-containing compartments”. Then, the viral particles are released by budding or exocytosis. All these steps involve membrane and actin cytoskeleton remodeling which is regulated by the RhoGTPases. In fact, some data suggest the implication of such proteins in HIV-1 biogenesis, but molecular mechanisms underlying this effect is not yet understood. During this thesis, our aim was to characterize the RhoGTPases and the effectors of cell signaling pathways which are specifically required during HIV-1 particle biogenesis. We focused our study on the GTPases Rac1, Cdc42 and RhoA because their influence on membrane and actin cytoskeleton was essential. Moreover, this work was accomplished on Jurkat T lymphocytes which are model cells to HIV-1 infection where the Gag proteins assemble at the plasma membrane, and on HeLa cells where the Gag proteins can also assemble on virus-containing compartments. Our results showed the requirement of the Rac1-IRSp53-Wave2 signaling pathway for HIV-1 Gag assembly at the plasma membrane of Jurkat T cells, and a role for RhoA GTPase in the regulation of viral particle assembly on virus-containing compartments in HeLa cells. This study improved understanding of cell signaling pathways required during the HIV-1 particle biogenesis and release, particularly in T cells which are the main host cell for HIV-1.

Page generated in 0.0878 seconds