• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Radiation Shielding Simulations for Small Satellites on Geostationary Transfer Orbit / Säteilysuojaussimulaatioita pienille satelliiteille geostationaarisilläsiirtoradoilla

Fetzer, Anton January 2022 (has links)
The emergence of small and affordable satellites has led to rapid growth in the number of launched satellites over the past two decades. To save costs, small satellites often use mass-produced electronic components not explicitly designed for the radiation environment of space, which reduces reliability and makes them unsuitable for higher orbits. Improved radiation protection would enable small satellites to operate in high radiation environments and increase their reliability. This work investigates how small satellite electronics can be protected against the high radiation environment of geostationary transfer orbit on the example of the Foresail-2mission. Foresail-2 is a planned 6U CubeSat mission to the Earth radiation belts and is intended to use consumer-grade electronics components. In this harsh environment, most semiconductor devices require radiation shielding. The Space EnvironmentInformation System of the European Space Agency was used to analyse expected particle spectra along the planned orbit through the radiation belts. These particle spectra were then used in Monte-Carlo simulations based on the Geant4 particle transport toolkit to simulate the performance of different shielding configurations. Several thousand multilayer shielding configurations were simulated to optimise the material composition and layer structure of multilayer shielding. The best multilayer configurations against the combined proton and electron spectra of the Earth’s radiation belts use materials with low proton numbers on top of materials with high proton numbers and can significantly outperform conventional aluminium shielding. However, the usage of alternative materials might introduce significant overhead in the design and manufacturing of the satellite structure. Additionally, the influence of satellite structure geometry and openings in the shield was analysed. Even a 1 cm2 opening in the shield can increase the total ionising dose received by electronic components over a mission lifetime by more than an order of magnitude. In conclusion, the work recommends an aluminium body of 6 mm or equivalent multilayer shielding for the Foresail-2 mission to reduce the radiation level to a tolerable level for consumer-grade electronics, while openings in the satellite body should be avoided or covered up with additional shielding. / FORESAIL
2

Small Satellite Design for High Sensitivity Magnetic Measurements

Janes, Noel Sebastian January 2022 (has links)
The magnetic cleanliness of a spacecraft during magnetic measurements is an important aspect in the design of many space science missions. The adequate reduction or removal of the spacecraft's magnetic disturbance plays a vital role in allowing the ambient magnetic field to be measured with the required accuracy. There are three main approaches to reduce the impact of the spacecraft's magnetic disturbance on the final magnetic measurement, with each approach imposing its own set of changes and constraints on the spacecraft. In turn these changes and constraints introduce additional complexity and cost to the system design. The required changes in the spacecraft's mission profile and configuration also need to be factored in during the design phase of a spacecraft, but cannot be avoided if high quality measurements are desired.  One of these approaches is the use of a magnetic cleanliness programme, and such programmes have a long history of successful use on large satellite missions.CubeSats have become increasingly technically capable and have in recent years begun to undertake scientific missions with challenging sensitivity requirements, including for magnetic measurements. The small size of the CubeSat form factor poses some unique challenges to the implementation of magnetic cleanliness techniques, but are also in increased need of limiting the residual magnetic moment when compared to large satellites. This thesis details the early phases of the magnetic cleanliness programme on the FORESAIL-2 science mission. Nine magnetic cleanliness requirements on the FORESAIL-2 satellite platform were derived from the FORESAIL-2 measurement and instrument requirements. A simple magnetic model was established, the results of which were used to propose a configuration of spacecraft subsystems. The resulting preliminary configuration of subsystems reduced the effective magnetic field of the REPE payload at the sensor by 352pT, 30.1%, when compared to the worst-performing configuration. Subsequently an improved model, utilising RSS analysis, was created. Combined with updated location information for each subsystem, defined using the proposed configuration, this second model yielded an estimated magnetic field of 2710pT at the reference point. The results of the second model were also used to identify the CDE payload and the TT&C subsystem as potentially problematic from a magnetic cleanliness perspective. A list of ferromagnetic materials was compiled, and a total mass of 453.72g of ferromagnetic materials was estimated. The work presented in this thesis is expected to form the basis of FORESAIL-2's continued magnetic cleanliness programme throughout the design and integration phases of the project.  For example, the improved model could be extended to include the estimated magnetic dipole moment's of each subsystem. Additionally, the inventories of materials, currents, and frequencies established as part of this thesis can be maintained throughout the FORESAIL-2's development cycle, and used to update the estimated total magnetic field of the spacecraft platform.
3

Magnetic Moment Characterization for Small Satellites

Sans Monguiló, Alejandro January 2021 (has links)
Small satellites are gaining popularity in a wide range of applications where attitude systems require high precision performance. One of the main sources of errors, in case of magnetic attitude control systems, is the residual magnetic moment (RMM) of the spacecraft. To keep the RMM low and stable, mitigation methods shall be applied based on the satellite’s magnetic dipole moment (MDM) characterization, which shall be measured accurately. For small satellites, the most common technique involves the generation of a field-free region for the magnetic measurements using a test bed. The test bed measurement setup is normally mechanical, where measurements from the device under test (DUT) are very tedious. Optical magnetic test beds (OMTB) are being developed for MDM characterization providing simpler set ups and faster measurements than mechanical test beds. In this work, accuracy of OMTB of Aalto University has been evaluated by measuring three permanent magnets in two configurations. The measurements show a relationship between the estimation accuracy and the DUT’s marker area seen by the camera. Moreover, it was observed that the field-free region generated by Helmholtz coil cage can generate false data points. Based on these observations, the detection of the marker’s positions have been evaluated using the view area (VA) and the pointing angle (PA). The analysis shows that there is a consistent pattern depending on the combination of the VA and PA. Hence, the method of data acquisition was improved in order to prioritize the markers which position allow better accuracy. The achieved improvement of MDM estimation results is 2 %, and the test bed’s overall error evaluated is a 13 % in MDM position estimation and 23 % in MDM magnitude estimation. The improved OMTB was used to characterize the MDM of four magnetic attitude coils of Foresail-1 satellite. The measurements results are consistent with design parameters, showing three dipole configuration in all coils with a MDM magnitude order of 10−2 A·m2. / Foresail-1

Page generated in 0.0316 seconds