• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Particle Filter Based Mosaicking for Forest Fire Tracking

Bradley, Justin Mathew 16 July 2007 (has links) (PDF)
Using autonomous miniature air vehicles (MAVs) is a cost-effective, simple method for collecting data about the size, shape, and location characteristics of a forest fire. However, noise in measurements used to compute pose (location and attitude) of the on-board camera leads to significant errors in the processing of collected video data. Typical methods using MAVs to track fires attempt to find single geolocation estimates and filter that estimate with subsequent observations. While this is an effective method of resolving the noise to achieve a better geolocation estimate, it reduces a fire to a single point or small set of points. A georeferenced mosaic is a more effective method for presenting information about a fire to fire fighters. It provides a means of presenting size, shape, and geolocation information simultaneously. We describe a novel technique to account for uncertainty in pose estimation of the camera by converting it to the image domain. We also introduce a new concept, a Georeferenced Uncertainty Mosaic (GUM), in which we utilize a Sequential Monte Carlo method (a particle filter) to resolve that uncertainty and construct a georeferenced mosaic that simultaneously shows size, shape, geolocation, and uncertainty information about the fire.

Page generated in 0.0853 seconds